MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem2 Structured version   Visualization version   GIF version

Theorem pgpfac1lem2 18645
Description: Lemma for pgpfac1 18650. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem2 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem2
Dummy variables 𝑘 𝑠 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . 3 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3716 . 2 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
31eldifad 3715 . . . . . . 7 (𝜑𝐶𝑈)
43adantr 472 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → 𝐶𝑈)
5 pgpfac1.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
6 pgpfac1.p . . . . . . . . . . . 12 (𝜑𝑃 pGrp 𝐺)
7 pgpprm 18179 . . . . . . . . . . . 12 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
9 prmz 15562 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
11 pgpfac1.mg . . . . . . . . . . 11 · = (.g𝐺)
1211subgmulgcl 17779 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑃 ∈ ℤ ∧ 𝐶𝑈) → (𝑃 · 𝐶) ∈ 𝑈)
135, 10, 3, 12syl3anc 1463 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝑈)
1413adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ 𝑈)
15 simpr 479 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊))
1614, 15eldifd 3714 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ (𝑈 ∖ (𝑆 𝑊)))
17 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
18 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
19 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
20 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
21 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
22 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
23 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
24 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
25 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
26 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
27 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
28 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
29 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
30 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
31 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
3217, 18, 19, 20, 21, 22, 23, 6, 24, 25, 26, 5, 27, 28, 29, 30, 31pgpfac1lem1 18644 . . . . . . 7 ((𝜑 ∧ (𝑃 · 𝐶) ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) = 𝑈)
3316, 32syldan 488 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) = 𝑈)
344, 33eleqtrrd 2830 . . . . 5 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})))
3534ex 449 . . . 4 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)}))))
36 eqid 2748 . . . . . 6 (-g𝐺) = (-g𝐺)
37 ablgrp 18369 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3824, 37syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
3919subgacs 17801 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
4038, 39syl 17 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
4140acsmred 16489 . . . . . . . . 9 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
4219subgss 17767 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
435, 42syl 17 . . . . . . . . . 10 (𝜑𝑈𝐵)
4443, 27sseldd 3733 . . . . . . . . 9 (𝜑𝐴𝐵)
4517mrcsncl 16445 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
4641, 44, 45syl2anc 696 . . . . . . . 8 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
4718, 46syl5eqel 2831 . . . . . . 7 (𝜑𝑆 ∈ (SubGrp‘𝐺))
4823lsmsubg2 18433 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
4924, 47, 28, 48syl3anc 1463 . . . . . 6 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
5043, 13sseldd 3733 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
5117mrcsncl 16445 . . . . . . 7 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝐾‘{(𝑃 · 𝐶)}) ∈ (SubGrp‘𝐺))
5241, 50, 51syl2anc 696 . . . . . 6 (𝜑 → (𝐾‘{(𝑃 · 𝐶)}) ∈ (SubGrp‘𝐺))
5336, 23, 49, 52lsmelvalm 18237 . . . . 5 (𝜑 → (𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) ↔ ∃𝑠 ∈ (𝑆 𝑊)∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡)))
54 eqid 2748 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))) = (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))
5519, 11, 54, 17cycsubg2 17803 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝐾‘{(𝑃 · 𝐶)}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))))
5638, 50, 55syl2anc 696 . . . . . . . 8 (𝜑 → (𝐾‘{(𝑃 · 𝐶)}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))))
5756rexeqdv 3272 . . . . . . 7 (𝜑 → (∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡)))
58 ovex 6829 . . . . . . . . 9 (𝑘 · (𝑃 · 𝐶)) ∈ V
5958rgenw 3050 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · (𝑃 · 𝐶)) ∈ V
60 oveq2 6809 . . . . . . . . . 10 (𝑡 = (𝑘 · (𝑃 · 𝐶)) → (𝑠(-g𝐺)𝑡) = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))))
6160eqeq2d 2758 . . . . . . . . 9 (𝑡 = (𝑘 · (𝑃 · 𝐶)) → (𝐶 = (𝑠(-g𝐺)𝑡) ↔ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6254, 61rexrnmpt 6520 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · (𝑃 · 𝐶)) ∈ V → (∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6359, 62mp1i 13 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6457, 63bitrd 268 . . . . . 6 (𝜑 → (∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6564rexbidv 3178 . . . . 5 (𝜑 → (∃𝑠 ∈ (𝑆 𝑊)∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
66 rexcom 3225 . . . . . 6 (∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))))
6738ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝐺 ∈ Grp)
6830, 43sstrd 3742 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 𝑊) ⊆ 𝐵)
6968adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑆 𝑊) ⊆ 𝐵)
7069sselda 3732 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑠𝐵)
71 simplr 809 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑘 ∈ ℤ)
7250ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ 𝐵)
7319, 11mulgcl 17731 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵)
7467, 71, 72, 73syl3anc 1463 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵)
7543, 3sseldd 3733 . . . . . . . . . . . . 13 (𝜑𝐶𝐵)
7675ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝐶𝐵)
77 eqid 2748 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
7819, 77, 36grpsubadd 17675 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑠𝐵 ∧ (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵𝐶𝐵)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
7967, 70, 74, 76, 78syl13anc 1465 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
80 1zzd 11571 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 1 ∈ ℤ)
8110ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑃 ∈ ℤ)
8271, 81zmulcld 11651 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑘 · 𝑃) ∈ ℤ)
8319, 11, 77mulgdir 17745 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (1 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ ∧ 𝐶𝐵)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)))
8467, 80, 82, 76, 83syl13anc 1465 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)))
8519, 11mulg1 17720 . . . . . . . . . . . . . . 15 (𝐶𝐵 → (1 · 𝐶) = 𝐶)
8676, 85syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (1 · 𝐶) = 𝐶)
8719, 11mulgass 17751 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → ((𝑘 · 𝑃) · 𝐶) = (𝑘 · (𝑃 · 𝐶)))
8867, 71, 81, 76, 87syl13anc 1465 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑘 · 𝑃) · 𝐶) = (𝑘 · (𝑃 · 𝐶)))
8986, 88oveq12d 6819 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)) = (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))))
9084, 89eqtrd 2782 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))))
9190eqeq1d 2750 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
9279, 91bitr4d 271 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠))
93 eqcom 2755 . . . . . . . . . 10 (𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶)
94 eqcom 2755 . . . . . . . . . 10 (𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶) ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠)
9592, 93, 943bitr4g 303 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ 𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶)))
9695rexbidva 3175 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑠 ∈ (𝑆 𝑊)𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶)))
97 risset 3188 . . . . . . . 8 (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) ↔ ∃𝑠 ∈ (𝑆 𝑊)𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶))
9896, 97syl6bbr 278 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
9998rexbidva 3175 . . . . . 6 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10066, 99syl5bb 272 . . . . 5 (𝜑 → (∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10153, 65, 1003bitrd 294 . . . 4 (𝜑 → (𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10235, 101sylibd 229 . . 3 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10338adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐺 ∈ Grp)
10475adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐶𝐵)
105 1z 11570 . . . . . . 7 1 ∈ ℤ
106 id 22 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
107 zmulcl 11589 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 · 𝑃) ∈ ℤ)
108106, 10, 107syl2anr 496 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑃) ∈ ℤ)
109 zaddcl 11580 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ) → (1 + (𝑘 · 𝑃)) ∈ ℤ)
110105, 108, 109sylancr 698 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (1 + (𝑘 · 𝑃)) ∈ ℤ)
11119, 20odcl 18126 . . . . . . . . 9 (𝐶𝐵 → (𝑂𝐶) ∈ ℕ0)
112104, 111syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∈ ℕ0)
113112nn0zd 11643 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∈ ℤ)
114 hashcl 13310 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
11525, 114syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
116115nn0zd 11643 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℤ)
117116adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (♯‘𝐵) ∈ ℤ)
118 gcdcom 15408 . . . . . . . . 9 (((1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))))
119110, 117, 118syl2anc 696 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))))
12019pgphash 18193 . . . . . . . . . . 11 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
1216, 25, 120syl2anc 696 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
122121adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
123122oveq1d 6816 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))))
124 simpr 479 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
12510adantr 472 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑃 ∈ ℤ)
126 1zzd 11571 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 1 ∈ ℤ)
127 gcdaddm 15419 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 gcd 1) = (𝑃 gcd (1 + (𝑘 · 𝑃))))
128124, 125, 126, 127syl3anc 1463 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd 1) = (𝑃 gcd (1 + (𝑘 · 𝑃))))
129 gcd1 15422 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (𝑃 gcd 1) = 1)
130125, 129syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd 1) = 1)
131128, 130eqtr3d 2784 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd (1 + (𝑘 · 𝑃))) = 1)
13219grpbn0 17623 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
13338, 132syl 17 . . . . . . . . . . . . 13 (𝜑𝐵 ≠ ∅)
134 hashnncl 13320 . . . . . . . . . . . . . 14 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
13525, 134syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
136133, 135mpbird 247 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐵) ∈ ℕ)
1378, 136pccld 15728 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
138137adantr 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
139 rpexp1i 15606 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd (1 + (𝑘 · 𝑃))) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1))
140125, 110, 138, 139syl3anc 1463 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → ((𝑃 gcd (1 + (𝑘 · 𝑃))) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1))
141131, 140mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1)
142119, 123, 1413eqtrd 2786 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = 1)
14319, 20oddvds2 18154 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐶𝐵) → (𝑂𝐶) ∥ (♯‘𝐵))
14438, 25, 75, 143syl3anc 1463 . . . . . . . 8 (𝜑 → (𝑂𝐶) ∥ (♯‘𝐵))
145144adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∥ (♯‘𝐵))
146 rpdvds 15547 . . . . . . 7 ((((1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (𝑂𝐶) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ (((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = 1 ∧ (𝑂𝐶) ∥ (♯‘𝐵))) → ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1)
147110, 113, 117, 142, 145, 146syl32anc 1471 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1)
14819, 20, 11odbezout 18146 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐶𝐵 ∧ (1 + (𝑘 · 𝑃)) ∈ ℤ) ∧ ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1) → ∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶)
149103, 104, 110, 147, 148syl31anc 1466 . . . . 5 ((𝜑𝑘 ∈ ℤ) → ∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶)
15049ad2antrr 764 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
151 simpr 479 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
15211subgmulgcl 17779 . . . . . . . . 9 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ ℤ ∧ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊))
1531523expia 1114 . . . . . . . 8 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)))
154150, 151, 153syl2anc 696 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)))
155 eleq1 2815 . . . . . . . 8 ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊) ↔ 𝐶 ∈ (𝑆 𝑊)))
156155imbi2d 329 . . . . . . 7 ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → ((((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)) ↔ (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
157154, 156syl5ibcom 235 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
158157rexlimdva 3157 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
159149, 158mpd 15 . . . 4 ((𝜑𝑘 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
160159rexlimdva 3157 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
161102, 160syld 47 . 2 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
1622, 161mt3d 140 1 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wral 3038  wrex 3039  Vcvv 3328  cdif 3700  cin 3702  wss 3703  wpss 3704  c0 4046  {csn 4309   class class class wbr 4792  cmpt 4869  ran crn 5255  cfv 6037  (class class class)co 6801  Fincfn 8109  1c1 10100   + caddc 10102   · cmul 10104  cn 11183  0cn0 11455  cz 11540  cexp 13025  chash 13282  cdvds 15153   gcd cgcd 15389  cprime 15558   pCnt cpc 15714  Basecbs 16030  +gcplusg 16114  0gc0g 16273  Moorecmre 16415  mrClscmrc 16416  ACScacs 16418  Grpcgrp 17594  -gcsg 17596  .gcmg 17712  SubGrpcsubg 17760  odcod 18115  gExcgex 18116   pGrp cpgp 18117  LSSumclsm 18220  Abelcabl 18365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-disj 4761  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7899  df-ec 7901  df-qs 7905  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-acn 8929  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-xnn0 11527  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-fac 13226  df-bc 13255  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-dvds 15154  df-gcd 15390  df-prm 15559  df-pc 15715  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-0g 16275  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-grp 17597  df-minusg 17598  df-sbg 17599  df-mulg 17713  df-subg 17763  df-eqg 17765  df-ga 17894  df-cntz 17921  df-od 18119  df-pgp 18121  df-lsm 18222  df-cmn 18366  df-abl 18367
This theorem is referenced by:  pgpfac1lem4  18648
  Copyright terms: Public domain W3C validator