![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2t1e2 | GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9020 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulid1i 7989 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5896 1c1 7842 · cmul 7846 2c2 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulcom 7942 ax-mulass 7944 ax-distr 7945 ax-1rid 7948 ax-cnre 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5899 df-2 9008 |
This theorem is referenced by: decbin2 9554 qbtwnrelemcalc 10286 expubnd 10608 trirecip 11541 ege2le3 11711 cos2tsin 11791 cos2bnd 11800 odd2np1 11910 opoe 11932 flodddiv4 11971 pythagtriplem4 12300 sin0pilem2 14660 cos2pi 14682 coskpi 14726 |
Copyright terms: Public domain | W3C validator |