| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2t1e2 | GIF version | ||
| Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t1e2 | ⊢ (2 · 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9061 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mulridi 8028 | 1 ⊢ (2 · 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5922 1c1 7880 · cmul 7884 2c2 9041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-2 9049 |
| This theorem is referenced by: decbin2 9597 qbtwnrelemcalc 10345 expubnd 10688 trirecip 11666 ege2le3 11836 cos2tsin 11916 cos2bnd 11925 odd2np1 12038 opoe 12060 flodddiv4 12101 pythagtriplem4 12437 sin0pilem2 15018 cos2pi 15040 coskpi 15084 2lgslem3d1 15341 |
| Copyright terms: Public domain | W3C validator |