![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2t1e2 | GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9055 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulid1i 8023 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 1c1 7875 · cmul 7879 2c2 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulcom 7975 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-2 9043 |
This theorem is referenced by: decbin2 9591 qbtwnrelemcalc 10327 expubnd 10670 trirecip 11647 ege2le3 11817 cos2tsin 11897 cos2bnd 11906 odd2np1 12017 opoe 12039 flodddiv4 12078 pythagtriplem4 12409 sin0pilem2 14958 cos2pi 14980 coskpi 15024 2lgslem3d1 15257 |
Copyright terms: Public domain | W3C validator |