Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2t1e2 | GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8953 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulid1i 7926 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1349 (class class class)co 5857 1c1 7779 · cmul 7783 2c2 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-mulcom 7879 ax-mulass 7881 ax-distr 7882 ax-1rid 7885 ax-cnre 7889 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-v 2733 df-un 3126 df-in 3128 df-ss 3135 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-br 3991 df-iota 5162 df-fv 5208 df-ov 5860 df-2 8941 |
This theorem is referenced by: decbin2 9487 qbtwnrelemcalc 10216 expubnd 10537 trirecip 11468 ege2le3 11638 cos2tsin 11718 cos2bnd 11727 odd2np1 11836 opoe 11858 flodddiv4 11897 pythagtriplem4 12226 sin0pilem2 13582 cos2pi 13604 coskpi 13648 |
Copyright terms: Public domain | W3C validator |