ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2t1e2 GIF version

Theorem 2t1e2 9260
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.)
Assertion
Ref Expression
2t1e2 (2 · 1) = 2

Proof of Theorem 2t1e2
StepHypRef Expression
1 2cn 9177 . 2 2 ∈ ℂ
21mulridi 8144 1 (2 · 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1395  (class class class)co 6000  1c1 7996   · cmul 8000  2c2 9157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulcom 8096  ax-mulass 8098  ax-distr 8099  ax-1rid 8102  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-2 9165
This theorem is referenced by:  decbin2  9714  qbtwnrelemcalc  10470  expubnd  10813  trirecip  12007  ege2le3  12177  cos2tsin  12257  cos2bnd  12266  odd2np1  12379  opoe  12401  flodddiv4  12442  pythagtriplem4  12786  sin0pilem2  15450  cos2pi  15472  coskpi  15516  2lgslem3d1  15773
  Copyright terms: Public domain W3C validator