![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2t1e2 | GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8556 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulid1i 7553 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 (class class class)co 5668 1c1 7414 · cmul 7418 2c2 8536 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-mulcom 7509 ax-mulass 7511 ax-distr 7512 ax-1rid 7515 ax-cnre 7519 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-un 3006 df-in 3008 df-ss 3015 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-iota 4995 df-fv 5038 df-ov 5671 df-2 8544 |
This theorem is referenced by: decbin2 9080 qbtwnrelemcalc 9730 expubnd 10075 trirecip 10958 ege2le3 11024 cos2tsin 11105 cos2bnd 11114 odd2np1 11214 opoe 11236 flodddiv4 11275 |
Copyright terms: Public domain | W3C validator |