| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2t1e2 | GIF version | ||
| Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t1e2 | ⊢ (2 · 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9142 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mulridi 8109 | 1 ⊢ (2 · 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 1c1 7961 · cmul 7965 2c2 9122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulcom 8061 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-2 9130 |
| This theorem is referenced by: decbin2 9679 qbtwnrelemcalc 10435 expubnd 10778 trirecip 11927 ege2le3 12097 cos2tsin 12177 cos2bnd 12186 odd2np1 12299 opoe 12321 flodddiv4 12362 pythagtriplem4 12706 sin0pilem2 15369 cos2pi 15391 coskpi 15435 2lgslem3d1 15692 |
| Copyright terms: Public domain | W3C validator |