Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2t1e2 | GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8924 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulid1i 7897 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5841 1c1 7750 · cmul 7754 2c2 8904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulcom 7850 ax-mulass 7852 ax-distr 7853 ax-1rid 7856 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-2 8912 |
This theorem is referenced by: decbin2 9458 qbtwnrelemcalc 10187 expubnd 10508 trirecip 11438 ege2le3 11608 cos2tsin 11688 cos2bnd 11697 odd2np1 11806 opoe 11828 flodddiv4 11867 pythagtriplem4 12196 sin0pilem2 13303 cos2pi 13325 coskpi 13369 |
Copyright terms: Public domain | W3C validator |