Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1t1e1 | Unicode version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7879 | . 2 | |
2 | 1 | mulid1i 7934 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 (class class class)co 5865 c1 7787 cmul 7791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-mulcl 7884 ax-mulcom 7887 ax-mulass 7889 ax-distr 7890 ax-1rid 7893 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: neg1mulneg1e1 9104 addltmul 9128 1exp 10519 expge1 10527 mulexp 10529 mulexpzap 10530 expaddzap 10534 m1expeven 10537 i4 10592 facp1 10678 binom 11460 prodf1 11518 prodfrecap 11522 fprodmul 11567 fprodrec 11605 fprodge1 11615 rpmul 12065 dvexp 13755 dvef 13768 lgslem3 13983 lgsval2lem 13991 lgsneg 14005 lgsdilem 14008 lgsdir 14016 lgsdi 14018 |
Copyright terms: Public domain | W3C validator |