ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1t1e1 Unicode version

Theorem 1t1e1 8568
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1t1e1  |-  ( 1  x.  1 )  =  1

Proof of Theorem 1t1e1
StepHypRef Expression
1 ax-1cn 7438 . 2  |-  1  e.  CC
21mulid1i 7490 1  |-  ( 1  x.  1 )  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1289  (class class class)co 5652   1c1 7351    x. cmul 7355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-resscn 7437  ax-1cn 7438  ax-icn 7440  ax-addcl 7441  ax-mulcl 7443  ax-mulcom 7446  ax-mulass 7448  ax-distr 7449  ax-1rid 7452  ax-cnre 7456
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-iota 4980  df-fv 5023  df-ov 5655
This theorem is referenced by:  neg1mulneg1e1  8628  addltmul  8652  1exp  9984  expge1  9992  mulexp  9994  mulexpzap  9995  expaddzap  9999  m1expeven  10002  i4  10057  facp1  10138  binom  10878  rpmul  11358
  Copyright terms: Public domain W3C validator