| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | Unicode version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8020 |
. 2
| |
| 2 | 1 | mulridi 8076 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-mulcl 8025 ax-mulcom 8028 ax-mulass 8030 ax-distr 8031 ax-1rid 8034 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: neg1mulneg1e1 9251 addltmul 9276 1exp 10715 expge1 10723 mulexp 10725 mulexpzap 10726 expaddzap 10730 m1expeven 10733 i4 10789 facp1 10877 binom 11828 prodf1 11886 prodfrecap 11890 fprodmul 11935 fprodrec 11973 fprodge1 11983 rpmul 12453 dvexp 15216 dvef 15232 lgslem3 15512 lgsval2lem 15520 lgsneg 15534 lgsdilem 15537 lgsdir 15545 lgsdi 15547 lgsquad2lem1 15591 lgsquad2lem2 15592 |
| Copyright terms: Public domain | W3C validator |