| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | Unicode version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7989 |
. 2
| |
| 2 | 1 | mulridi 8045 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-mulcom 7997 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: neg1mulneg1e1 9220 addltmul 9245 1exp 10677 expge1 10685 mulexp 10687 mulexpzap 10688 expaddzap 10692 m1expeven 10695 i4 10751 facp1 10839 binom 11666 prodf1 11724 prodfrecap 11728 fprodmul 11773 fprodrec 11811 fprodge1 11821 rpmul 12291 dvexp 15031 dvef 15047 lgslem3 15327 lgsval2lem 15335 lgsneg 15349 lgsdilem 15352 lgsdir 15360 lgsdi 15362 lgsquad2lem1 15406 lgsquad2lem2 15407 |
| Copyright terms: Public domain | W3C validator |