Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1t1e1 | Unicode version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7867 | . 2 | |
2 | 1 | mulid1i 7922 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 (class class class)co 5853 c1 7775 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-mulcom 7875 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: neg1mulneg1e1 9090 addltmul 9114 1exp 10505 expge1 10513 mulexp 10515 mulexpzap 10516 expaddzap 10520 m1expeven 10523 i4 10578 facp1 10664 binom 11447 prodf1 11505 prodfrecap 11509 fprodmul 11554 fprodrec 11592 fprodge1 11602 rpmul 12052 dvexp 13469 dvef 13482 lgslem3 13697 lgsval2lem 13705 lgsneg 13719 lgsdilem 13722 lgsdir 13730 lgsdi 13732 |
Copyright terms: Public domain | W3C validator |