Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1t1e1 | Unicode version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7846 | . 2 | |
2 | 1 | mulid1i 7901 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 (class class class)co 5842 c1 7754 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-mulcom 7854 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: neg1mulneg1e1 9069 addltmul 9093 1exp 10484 expge1 10492 mulexp 10494 mulexpzap 10495 expaddzap 10499 m1expeven 10502 i4 10557 facp1 10643 binom 11425 prodf1 11483 prodfrecap 11487 fprodmul 11532 fprodrec 11570 fprodge1 11580 rpmul 12030 dvexp 13315 dvef 13328 lgslem3 13543 lgsval2lem 13551 lgsneg 13565 lgsdilem 13568 lgsdir 13576 lgsdi 13578 |
Copyright terms: Public domain | W3C validator |