| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | Unicode version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8092 |
. 2
| |
| 2 | 1 | mulridi 8148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-mulcom 8100 ax-mulass 8102 ax-distr 8103 ax-1rid 8106 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: neg1mulneg1e1 9323 addltmul 9348 1exp 10790 expge1 10798 mulexp 10800 mulexpzap 10801 expaddzap 10805 m1expeven 10808 i4 10864 facp1 10952 binom 11995 prodf1 12053 prodfrecap 12057 fprodmul 12102 fprodrec 12140 fprodge1 12150 rpmul 12620 dvexp 15385 dvef 15401 lgslem3 15681 lgsval2lem 15689 lgsneg 15703 lgsdilem 15706 lgsdir 15714 lgsdi 15716 lgsquad2lem1 15760 lgsquad2lem2 15761 |
| Copyright terms: Public domain | W3C validator |