ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri Unicode version

Theorem lttri 8177
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
lt.3  |-  C  e.  RR
Assertion
Ref Expression
lttri  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )

Proof of Theorem lttri
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 lt.2 . 2  |-  B  e.  RR
3 lt.3 . 2  |-  C  e.  RR
4 lttr 8146 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
51, 2, 3, 4mp3an 1350 1  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   class class class wbr 4044   RRcr 7924    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-lttrn 8039
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-ltxr 8112
This theorem is referenced by:  1lt3  9208  2lt4  9210  1lt4  9211  3lt5  9213  2lt5  9214  1lt5  9215  4lt6  9217  3lt6  9218  2lt6  9219  1lt6  9220  5lt7  9222  4lt7  9223  3lt7  9224  2lt7  9225  1lt7  9226  6lt8  9228  5lt8  9229  4lt8  9230  3lt8  9231  2lt8  9232  1lt8  9233  7lt9  9235  6lt9  9236  5lt9  9237  4lt9  9238  3lt9  9239  2lt9  9240  1lt9  9241  8lt10  9635  7lt10  9636  6lt10  9637  5lt10  9638  4lt10  9639  3lt10  9640  2lt10  9641  1lt10  9642  sincos2sgn  12077  cos12dec  12079  epos  12092  ene1  12096  eap1  12097  reeff1o  15245  pipos  15260  pigt3  15316  apdiff  15987
  Copyright terms: Public domain W3C validator