![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lttri | Unicode version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 |
![]() ![]() ![]() ![]() |
lt.2 |
![]() ![]() ![]() ![]() |
lt.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lttri |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | lt.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | lt.3 |
. 2
![]() ![]() ![]() ![]() | |
4 | lttr 8093 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | mp3an 1348 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-lttrn 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: 1lt3 9153 2lt4 9155 1lt4 9156 3lt5 9158 2lt5 9159 1lt5 9160 4lt6 9162 3lt6 9163 2lt6 9164 1lt6 9165 5lt7 9167 4lt7 9168 3lt7 9169 2lt7 9170 1lt7 9171 6lt8 9173 5lt8 9174 4lt8 9175 3lt8 9176 2lt8 9177 1lt8 9178 7lt9 9180 6lt9 9181 5lt9 9182 4lt9 9183 3lt9 9184 2lt9 9185 1lt9 9186 8lt10 9579 7lt10 9580 6lt10 9581 5lt10 9582 4lt10 9583 3lt10 9584 2lt10 9585 1lt10 9586 sincos2sgn 11909 cos12dec 11911 epos 11924 ene1 11928 eap1 11929 reeff1o 14908 pipos 14923 pigt3 14979 apdiff 15538 |
Copyright terms: Public domain | W3C validator |