ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri Unicode version

Theorem lttri 7525
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
lt.3  |-  C  e.  RR
Assertion
Ref Expression
lttri  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )

Proof of Theorem lttri
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 lt.2 . 2  |-  B  e.  RR
3 lt.3 . 2  |-  C  e.  RR
4 lttr 7495 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
51, 2, 3, 4mp3an 1271 1  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1436   class class class wbr 3819   RRcr 7285    < clt 7458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3930  ax-pow 3982  ax-pr 4008  ax-un 4232  ax-setind 4324  ax-cnex 7372  ax-resscn 7373  ax-pre-lttrn 7395
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-uni 3636  df-br 3820  df-opab 3874  df-xp 4415  df-pnf 7460  df-mnf 7461  df-ltxr 7463
This theorem is referenced by:  1lt3  8513  2lt4  8515  1lt4  8516  3lt5  8518  2lt5  8519  1lt5  8520  4lt6  8522  3lt6  8523  2lt6  8524  1lt6  8525  5lt7  8527  4lt7  8528  3lt7  8529  2lt7  8530  1lt7  8531  6lt8  8533  5lt8  8534  4lt8  8535  3lt8  8536  2lt8  8537  1lt8  8538  7lt9  8540  6lt9  8541  5lt9  8542  4lt9  8543  3lt9  8544  2lt9  8545  1lt9  8546  8lt10  8932  7lt10  8933  6lt10  8934  5lt10  8935  4lt10  8936  3lt10  8937  2lt10  8938  1lt10  8939
  Copyright terms: Public domain W3C validator