ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri Unicode version

Theorem lttri 7791
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
lt.3  |-  C  e.  RR
Assertion
Ref Expression
lttri  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )

Proof of Theorem lttri
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 lt.2 . 2  |-  B  e.  RR
3 lt.3 . 2  |-  C  e.  RR
4 lttr 7761 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
51, 2, 3, 4mp3an 1298 1  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1463   class class class wbr 3895   RRcr 7546    < clt 7724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-pre-lttrn 7659
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-xp 4505  df-pnf 7726  df-mnf 7727  df-ltxr 7729
This theorem is referenced by:  1lt3  8795  2lt4  8797  1lt4  8798  3lt5  8800  2lt5  8801  1lt5  8802  4lt6  8804  3lt6  8805  2lt6  8806  1lt6  8807  5lt7  8809  4lt7  8810  3lt7  8811  2lt7  8812  1lt7  8813  6lt8  8815  5lt8  8816  4lt8  8817  3lt8  8818  2lt8  8819  1lt8  8820  7lt9  8822  6lt9  8823  5lt9  8824  4lt9  8825  3lt9  8826  2lt9  8827  1lt9  8828  8lt10  9217  7lt10  9218  6lt10  9219  5lt10  9220  4lt10  9221  3lt10  9222  2lt10  9223  1lt10  9224  sincos2sgn  11323  epos  11335  ene1  11339  eap1  11340
  Copyright terms: Public domain W3C validator