ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri Unicode version

Theorem lttri 8064
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
lt.3  |-  C  e.  RR
Assertion
Ref Expression
lttri  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )

Proof of Theorem lttri
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 lt.2 . 2  |-  B  e.  RR
3 lt.3 . 2  |-  C  e.  RR
4 lttr 8033 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
51, 2, 3, 4mp3an 1337 1  |-  ( ( A  <  B  /\  B  <  C )  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4005   RRcr 7812    < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-ltxr 7999
This theorem is referenced by:  1lt3  9092  2lt4  9094  1lt4  9095  3lt5  9097  2lt5  9098  1lt5  9099  4lt6  9101  3lt6  9102  2lt6  9103  1lt6  9104  5lt7  9106  4lt7  9107  3lt7  9108  2lt7  9109  1lt7  9110  6lt8  9112  5lt8  9113  4lt8  9114  3lt8  9115  2lt8  9116  1lt8  9117  7lt9  9119  6lt9  9120  5lt9  9121  4lt9  9122  3lt9  9123  2lt9  9124  1lt9  9125  8lt10  9517  7lt10  9518  6lt10  9519  5lt10  9520  4lt10  9521  3lt10  9522  2lt10  9523  1lt10  9524  sincos2sgn  11775  cos12dec  11777  epos  11790  ene1  11794  eap1  11795  reeff1o  14233  pipos  14248  pigt3  14304  apdiff  14835
  Copyright terms: Public domain W3C validator