ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllempos Unicode version

Theorem zaddcllempos 9363
Description: Lemma for zaddcl 9366. Special case in which  N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllempos  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )

Proof of Theorem zaddcllempos
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . 5  |-  ( x  =  1  ->  ( M  +  x )  =  ( M  + 
1 ) )
21eleq1d 2265 . . . 4  |-  ( x  =  1  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  1 )  e.  ZZ ) )
32imbi2d 230 . . 3  |-  ( x  =  1  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ ) ) )
4 oveq2 5930 . . . . 5  |-  ( x  =  y  ->  ( M  +  x )  =  ( M  +  y ) )
54eleq1d 2265 . . . 4  |-  ( x  =  y  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  y )  e.  ZZ ) )
65imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  y )  e.  ZZ ) ) )
7 oveq2 5930 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( M  +  x )  =  ( M  +  ( y  +  1 ) ) )
87eleq1d 2265 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
98imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
10 oveq2 5930 . . . . 5  |-  ( x  =  N  ->  ( M  +  x )  =  ( M  +  N ) )
1110eleq1d 2265 . . . 4  |-  ( x  =  N  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  N )  e.  ZZ ) )
1211imbi2d 230 . . 3  |-  ( x  =  N  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  N
)  e.  ZZ ) ) )
13 peano2z 9362 . . 3  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
14 peano2z 9362 . . . . . 6  |-  ( ( M  +  y )  e.  ZZ  ->  (
( M  +  y )  +  1 )  e.  ZZ )
15 zcn 9331 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
1615adantl 277 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  M  e.  CC )
17 nncn 8998 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
1817adantr 276 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  y  e.  CC )
19 1cnd 8042 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  1  e.  CC )
2016, 18, 19addassd 8049 . . . . . . 7  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( M  +  y )  +  1 )  =  ( M  +  ( y  +  1 ) ) )
2120eleq1d 2265 . . . . . 6  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( ( M  +  y )  +  1 )  e.  ZZ  <->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
2214, 21imbitrid 154 . . . . 5  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( M  +  y )  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
2322ex 115 . . . 4  |-  ( y  e.  NN  ->  ( M  e.  ZZ  ->  ( ( M  +  y )  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
2423a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( M  e.  ZZ  ->  ( M  +  y )  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
253, 6, 9, 12, 13, 24nnind 9006 . 2  |-  ( N  e.  NN  ->  ( M  e.  ZZ  ->  ( M  +  N )  e.  ZZ ) )
2625impcom 125 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877   1c1 7880    + caddc 7882   NNcn 8990   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  zaddcl  9366
  Copyright terms: Public domain W3C validator