ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllempos Unicode version

Theorem zaddcllempos 9409
Description: Lemma for zaddcl 9412. Special case in which  N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllempos  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )

Proof of Theorem zaddcllempos
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5952 . . . . 5  |-  ( x  =  1  ->  ( M  +  x )  =  ( M  + 
1 ) )
21eleq1d 2274 . . . 4  |-  ( x  =  1  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  1 )  e.  ZZ ) )
32imbi2d 230 . . 3  |-  ( x  =  1  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ ) ) )
4 oveq2 5952 . . . . 5  |-  ( x  =  y  ->  ( M  +  x )  =  ( M  +  y ) )
54eleq1d 2274 . . . 4  |-  ( x  =  y  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  y )  e.  ZZ ) )
65imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  y )  e.  ZZ ) ) )
7 oveq2 5952 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( M  +  x )  =  ( M  +  ( y  +  1 ) ) )
87eleq1d 2274 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
98imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
10 oveq2 5952 . . . . 5  |-  ( x  =  N  ->  ( M  +  x )  =  ( M  +  N ) )
1110eleq1d 2274 . . . 4  |-  ( x  =  N  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  N )  e.  ZZ ) )
1211imbi2d 230 . . 3  |-  ( x  =  N  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  N
)  e.  ZZ ) ) )
13 peano2z 9408 . . 3  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
14 peano2z 9408 . . . . . 6  |-  ( ( M  +  y )  e.  ZZ  ->  (
( M  +  y )  +  1 )  e.  ZZ )
15 zcn 9377 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
1615adantl 277 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  M  e.  CC )
17 nncn 9044 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
1817adantr 276 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  y  e.  CC )
19 1cnd 8088 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  1  e.  CC )
2016, 18, 19addassd 8095 . . . . . . 7  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( M  +  y )  +  1 )  =  ( M  +  ( y  +  1 ) ) )
2120eleq1d 2274 . . . . . 6  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( ( M  +  y )  +  1 )  e.  ZZ  <->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
2214, 21imbitrid 154 . . . . 5  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( M  +  y )  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
2322ex 115 . . . 4  |-  ( y  e.  NN  ->  ( M  e.  ZZ  ->  ( ( M  +  y )  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
2423a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( M  e.  ZZ  ->  ( M  +  y )  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
253, 6, 9, 12, 13, 24nnind 9052 . 2  |-  ( N  e.  NN  ->  ( M  e.  ZZ  ->  ( M  +  N )  e.  ZZ ) )
2625impcom 125 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928   NNcn 9036   ZZcz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373
This theorem is referenced by:  zaddcl  9412  lswccatn0lsw  11067
  Copyright terms: Public domain W3C validator