![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulassd | Unicode version |
Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addassd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mulassd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addassd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | mulass 8005 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 7977 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ltmul1 8613 recexap 8674 mulap0 8675 mulcanapd 8682 receuap 8690 divmulasscomap 8717 divdivdivap 8734 divmuleqap 8738 conjmulap 8750 apmul1 8809 qapne 9707 modqmul1 10451 modqdi 10466 expadd 10655 mulbinom2 10730 binom3 10731 faclbnd 10815 faclbnd6 10818 bcm1k 10834 bcp1nk 10836 bcval5 10837 crre 11004 remullem 11018 resqrexlemcalc1 11161 resqrexlemnm 11165 amgm2 11265 binomlem 11629 geo2sum 11660 mertenslemi1 11681 clim2prod 11685 sinadd 11882 tanaddap 11885 dvdsmulcr 11967 dvdsmulgcd 12165 qredeq 12237 2sqpwodd 12317 pcaddlem 12480 prmpwdvds 12496 dvexp 14890 dvply1 14943 tangtx 15014 cxpmul 15088 binom4 15152 lgsneg 15181 gausslemma2dlem6 15224 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgseisenlem4 15230 lgsquad2lem1 15238 lgsquad3 15241 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 2lgsoddprmlem2 15263 2sqlem3 15274 |
Copyright terms: Public domain | W3C validator |