| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulassd | Unicode version | ||
| Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| mulassd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | mulass 8086 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 8058 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ltmul1 8695 recexap 8756 mulap0 8757 mulcanapd 8764 receuap 8772 divmulasscomap 8799 divdivdivap 8816 divmuleqap 8820 conjmulap 8832 apmul1 8891 qapne 9790 modqmul1 10554 modqdi 10569 expadd 10758 mulbinom2 10833 binom3 10834 faclbnd 10918 faclbnd6 10921 bcm1k 10937 bcp1nk 10939 bcval5 10940 crre 11253 remullem 11267 resqrexlemcalc1 11410 resqrexlemnm 11414 amgm2 11514 binomlem 11879 geo2sum 11910 mertenslemi1 11931 clim2prod 11935 sinadd 12132 tanaddap 12135 dvdsmulcr 12217 dvdsmulgcd 12431 qredeq 12503 2sqpwodd 12583 pcaddlem 12747 prmpwdvds 12763 dvexp 15268 dvply1 15322 tangtx 15395 cxpmul 15469 binom4 15536 perfectlem1 15556 perfectlem2 15557 perfect 15558 lgsneg 15586 gausslemma2dlem6 15629 lgseisenlem1 15632 lgseisenlem2 15633 lgseisenlem3 15634 lgseisenlem4 15635 lgsquad2lem1 15643 lgsquad3 15646 2lgslem3a 15655 2lgslem3b 15656 2lgslem3c 15657 2lgslem3d 15658 2lgsoddprmlem2 15668 2sqlem3 15679 |
| Copyright terms: Public domain | W3C validator |