| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqdiv | Unicode version | ||
| Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqdiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. . . . . . . . 9
| |
| 2 | eqid 2206 |
. . . . . . . . 9
| |
| 3 | 1, 2 | intqfrac2 10477 |
. . . . . . . 8
|
| 4 | 3 | simp3d 1014 |
. . . . . . 7
|
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | 5 | oveq1d 5969 |
. . . . 5
|
| 7 | simpl 109 |
. . . . . . . 8
| |
| 8 | 7 | flqcld 10433 |
. . . . . . 7
|
| 9 | 8 | zcnd 9509 |
. . . . . 6
|
| 10 | zq 9760 |
. . . . . . . 8
| |
| 11 | 8, 10 | syl 14 |
. . . . . . 7
|
| 12 | qsubcl 9772 |
. . . . . . . 8
| |
| 13 | qcn 9768 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 11, 14 | syldan 282 |
. . . . . 6
|
| 16 | simpr 110 |
. . . . . . 7
| |
| 17 | 16 | nncnd 9063 |
. . . . . 6
|
| 18 | 16 | nnap0d 9095 |
. . . . . 6
|
| 19 | 9, 15, 17, 18 | divdirapd 8915 |
. . . . 5
|
| 20 | 6, 19 | eqtrd 2239 |
. . . 4
|
| 21 | flqcl 10429 |
. . . . . 6
| |
| 22 | eqid 2206 |
. . . . . . . 8
| |
| 23 | eqid 2206 |
. . . . . . . 8
| |
| 24 | 22, 23 | intfracq 10478 |
. . . . . . 7
|
| 25 | 24 | simp3d 1014 |
. . . . . 6
|
| 26 | 21, 25 | sylan 283 |
. . . . 5
|
| 27 | 26 | oveq1d 5969 |
. . . 4
|
| 28 | znq 9758 |
. . . . . . . 8
| |
| 29 | 28 | flqcld 10433 |
. . . . . . 7
|
| 30 | 21, 29 | sylan 283 |
. . . . . 6
|
| 31 | 30 | zcnd 9509 |
. . . . 5
|
| 32 | 8, 16, 28 | syl2anc 411 |
. . . . . . 7
|
| 33 | zq 9760 |
. . . . . . . 8
| |
| 34 | 30, 33 | syl 14 |
. . . . . . 7
|
| 35 | qsubcl 9772 |
. . . . . . 7
| |
| 36 | 32, 34, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | qcn 9768 |
. . . . . 6
| |
| 38 | 36, 37 | syl 14 |
. . . . 5
|
| 39 | 11, 12 | syldan 282 |
. . . . . . 7
|
| 40 | nnq 9767 |
. . . . . . . 8
| |
| 41 | 40 | adantl 277 |
. . . . . . 7
|
| 42 | 16 | nnne0d 9094 |
. . . . . . 7
|
| 43 | qdivcl 9777 |
. . . . . . 7
| |
| 44 | 39, 41, 42, 43 | syl3anc 1250 |
. . . . . 6
|
| 45 | qcn 9768 |
. . . . . 6
| |
| 46 | 44, 45 | syl 14 |
. . . . 5
|
| 47 | 31, 38, 46 | addassd 8108 |
. . . 4
|
| 48 | 20, 27, 47 | 3eqtrd 2243 |
. . 3
|
| 49 | 48 | fveq2d 5590 |
. 2
|
| 50 | qre 9759 |
. . . . 5
| |
| 51 | 36, 50 | syl 14 |
. . . 4
|
| 52 | qre 9759 |
. . . . . 6
| |
| 53 | 39, 52 | syl 14 |
. . . . 5
|
| 54 | 53, 16 | nndivred 9099 |
. . . 4
|
| 55 | 24 | simp1d 1012 |
. . . . 5
|
| 56 | 21, 55 | sylan 283 |
. . . 4
|
| 57 | 16 | nnrpd 9829 |
. . . . 5
|
| 58 | qfracge0 10437 |
. . . . . 6
| |
| 59 | 58 | adantr 276 |
. . . . 5
|
| 60 | 53, 57, 59 | divge0d 9872 |
. . . 4
|
| 61 | 51, 54, 56, 60 | addge0d 8608 |
. . 3
|
| 62 | nnre 9056 |
. . . . . . . 8
| |
| 63 | peano2rem 8352 |
. . . . . . . 8
| |
| 64 | 62, 63 | syl 14 |
. . . . . . 7
|
| 65 | nnap0 9078 |
. . . . . . 7
| |
| 66 | 64, 62, 65 | redivclapd 8921 |
. . . . . 6
|
| 67 | 66 | adantl 277 |
. . . . 5
|
| 68 | 16 | nnrecred 9096 |
. . . . 5
|
| 69 | 24 | simp2d 1013 |
. . . . . 6
|
| 70 | 21, 69 | sylan 283 |
. . . . 5
|
| 71 | qfraclt1 10436 |
. . . . . . 7
| |
| 72 | 71 | adantr 276 |
. . . . . 6
|
| 73 | 16 | nnred 9062 |
. . . . . . 7
|
| 74 | 16 | nngt0d 9093 |
. . . . . . 7
|
| 75 | 1re 8084 |
. . . . . . . 8
| |
| 76 | ltdiv1 8954 |
. . . . . . . 8
| |
| 77 | 75, 76 | mp3an2 1338 |
. . . . . . 7
|
| 78 | 53, 73, 74, 77 | syl12anc 1248 |
. . . . . 6
|
| 79 | 72, 78 | mpbid 147 |
. . . . 5
|
| 80 | 51, 54, 67, 68, 70, 79 | leltaddd 8652 |
. . . 4
|
| 81 | nncn 9057 |
. . . . . . . 8
| |
| 82 | npcan1 8463 |
. . . . . . . 8
| |
| 83 | 81, 82 | syl 14 |
. . . . . . 7
|
| 84 | 83 | oveq1d 5969 |
. . . . . 6
|
| 85 | 64 | recnd 8114 |
. . . . . . 7
|
| 86 | ax-1cn 8031 |
. . . . . . . 8
| |
| 87 | divdirap 8783 |
. . . . . . . 8
| |
| 88 | 86, 87 | mp3an2 1338 |
. . . . . . 7
|
| 89 | 85, 81, 65, 88 | syl12anc 1248 |
. . . . . 6
|
| 90 | 81, 65 | dividapd 8872 |
. . . . . 6
|
| 91 | 84, 89, 90 | 3eqtr3d 2247 |
. . . . 5
|
| 92 | 91 | adantl 277 |
. . . 4
|
| 93 | 80, 92 | breqtrd 4074 |
. . 3
|
| 94 | 32 | flqcld 10433 |
. . . 4
|
| 95 | qaddcl 9769 |
. . . . 5
| |
| 96 | 36, 44, 95 | syl2anc 411 |
. . . 4
|
| 97 | flqbi2 10447 |
. . . 4
| |
| 98 | 94, 96, 97 | syl2anc 411 |
. . 3
|
| 99 | 61, 93, 98 | mpbir2and 947 |
. 2
|
| 100 | 49, 99 | eqtr2d 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-n0 9309 df-z 9386 df-q 9754 df-rp 9789 df-fl 10426 |
| This theorem is referenced by: modqmulnn 10500 bitsp1 12312 |
| Copyright terms: Public domain | W3C validator |