| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqdiv | Unicode version | ||
| Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqdiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . . . . . . 9
| |
| 2 | eqid 2229 |
. . . . . . . . 9
| |
| 3 | 1, 2 | intqfrac2 10528 |
. . . . . . . 8
|
| 4 | 3 | simp3d 1035 |
. . . . . . 7
|
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | 5 | oveq1d 6009 |
. . . . 5
|
| 7 | simpl 109 |
. . . . . . . 8
| |
| 8 | 7 | flqcld 10484 |
. . . . . . 7
|
| 9 | 8 | zcnd 9558 |
. . . . . 6
|
| 10 | zq 9809 |
. . . . . . . 8
| |
| 11 | 8, 10 | syl 14 |
. . . . . . 7
|
| 12 | qsubcl 9821 |
. . . . . . . 8
| |
| 13 | qcn 9817 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 11, 14 | syldan 282 |
. . . . . 6
|
| 16 | simpr 110 |
. . . . . . 7
| |
| 17 | 16 | nncnd 9112 |
. . . . . 6
|
| 18 | 16 | nnap0d 9144 |
. . . . . 6
|
| 19 | 9, 15, 17, 18 | divdirapd 8964 |
. . . . 5
|
| 20 | 6, 19 | eqtrd 2262 |
. . . 4
|
| 21 | flqcl 10480 |
. . . . . 6
| |
| 22 | eqid 2229 |
. . . . . . . 8
| |
| 23 | eqid 2229 |
. . . . . . . 8
| |
| 24 | 22, 23 | intfracq 10529 |
. . . . . . 7
|
| 25 | 24 | simp3d 1035 |
. . . . . 6
|
| 26 | 21, 25 | sylan 283 |
. . . . 5
|
| 27 | 26 | oveq1d 6009 |
. . . 4
|
| 28 | znq 9807 |
. . . . . . . 8
| |
| 29 | 28 | flqcld 10484 |
. . . . . . 7
|
| 30 | 21, 29 | sylan 283 |
. . . . . 6
|
| 31 | 30 | zcnd 9558 |
. . . . 5
|
| 32 | 8, 16, 28 | syl2anc 411 |
. . . . . . 7
|
| 33 | zq 9809 |
. . . . . . . 8
| |
| 34 | 30, 33 | syl 14 |
. . . . . . 7
|
| 35 | qsubcl 9821 |
. . . . . . 7
| |
| 36 | 32, 34, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | qcn 9817 |
. . . . . 6
| |
| 38 | 36, 37 | syl 14 |
. . . . 5
|
| 39 | 11, 12 | syldan 282 |
. . . . . . 7
|
| 40 | nnq 9816 |
. . . . . . . 8
| |
| 41 | 40 | adantl 277 |
. . . . . . 7
|
| 42 | 16 | nnne0d 9143 |
. . . . . . 7
|
| 43 | qdivcl 9826 |
. . . . . . 7
| |
| 44 | 39, 41, 42, 43 | syl3anc 1271 |
. . . . . 6
|
| 45 | qcn 9817 |
. . . . . 6
| |
| 46 | 44, 45 | syl 14 |
. . . . 5
|
| 47 | 31, 38, 46 | addassd 8157 |
. . . 4
|
| 48 | 20, 27, 47 | 3eqtrd 2266 |
. . 3
|
| 49 | 48 | fveq2d 5627 |
. 2
|
| 50 | qre 9808 |
. . . . 5
| |
| 51 | 36, 50 | syl 14 |
. . . 4
|
| 52 | qre 9808 |
. . . . . 6
| |
| 53 | 39, 52 | syl 14 |
. . . . 5
|
| 54 | 53, 16 | nndivred 9148 |
. . . 4
|
| 55 | 24 | simp1d 1033 |
. . . . 5
|
| 56 | 21, 55 | sylan 283 |
. . . 4
|
| 57 | 16 | nnrpd 9878 |
. . . . 5
|
| 58 | qfracge0 10488 |
. . . . . 6
| |
| 59 | 58 | adantr 276 |
. . . . 5
|
| 60 | 53, 57, 59 | divge0d 9921 |
. . . 4
|
| 61 | 51, 54, 56, 60 | addge0d 8657 |
. . 3
|
| 62 | nnre 9105 |
. . . . . . . 8
| |
| 63 | peano2rem 8401 |
. . . . . . . 8
| |
| 64 | 62, 63 | syl 14 |
. . . . . . 7
|
| 65 | nnap0 9127 |
. . . . . . 7
| |
| 66 | 64, 62, 65 | redivclapd 8970 |
. . . . . 6
|
| 67 | 66 | adantl 277 |
. . . . 5
|
| 68 | 16 | nnrecred 9145 |
. . . . 5
|
| 69 | 24 | simp2d 1034 |
. . . . . 6
|
| 70 | 21, 69 | sylan 283 |
. . . . 5
|
| 71 | qfraclt1 10487 |
. . . . . . 7
| |
| 72 | 71 | adantr 276 |
. . . . . 6
|
| 73 | 16 | nnred 9111 |
. . . . . . 7
|
| 74 | 16 | nngt0d 9142 |
. . . . . . 7
|
| 75 | 1re 8133 |
. . . . . . . 8
| |
| 76 | ltdiv1 9003 |
. . . . . . . 8
| |
| 77 | 75, 76 | mp3an2 1359 |
. . . . . . 7
|
| 78 | 53, 73, 74, 77 | syl12anc 1269 |
. . . . . 6
|
| 79 | 72, 78 | mpbid 147 |
. . . . 5
|
| 80 | 51, 54, 67, 68, 70, 79 | leltaddd 8701 |
. . . 4
|
| 81 | nncn 9106 |
. . . . . . . 8
| |
| 82 | npcan1 8512 |
. . . . . . . 8
| |
| 83 | 81, 82 | syl 14 |
. . . . . . 7
|
| 84 | 83 | oveq1d 6009 |
. . . . . 6
|
| 85 | 64 | recnd 8163 |
. . . . . . 7
|
| 86 | ax-1cn 8080 |
. . . . . . . 8
| |
| 87 | divdirap 8832 |
. . . . . . . 8
| |
| 88 | 86, 87 | mp3an2 1359 |
. . . . . . 7
|
| 89 | 85, 81, 65, 88 | syl12anc 1269 |
. . . . . 6
|
| 90 | 81, 65 | dividapd 8921 |
. . . . . 6
|
| 91 | 84, 89, 90 | 3eqtr3d 2270 |
. . . . 5
|
| 92 | 91 | adantl 277 |
. . . 4
|
| 93 | 80, 92 | breqtrd 4108 |
. . 3
|
| 94 | 32 | flqcld 10484 |
. . . 4
|
| 95 | qaddcl 9818 |
. . . . 5
| |
| 96 | 36, 44, 95 | syl2anc 411 |
. . . 4
|
| 97 | flqbi2 10498 |
. . . 4
| |
| 98 | 94, 96, 97 | syl2anc 411 |
. . 3
|
| 99 | 61, 93, 98 | mpbir2and 950 |
. 2
|
| 100 | 49, 99 | eqtr2d 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-po 4384 df-iso 4385 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-n0 9358 df-z 9435 df-q 9803 df-rp 9838 df-fl 10477 |
| This theorem is referenced by: modqmulnn 10551 bitsp1 12448 |
| Copyright terms: Public domain | W3C validator |