Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > flqdiv | Unicode version |
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.) |
Ref | Expression |
---|---|
flqdiv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . . . . . . . 9 | |
2 | eqid 2157 | . . . . . . . . 9 | |
3 | 1, 2 | intqfrac2 10211 | . . . . . . . 8 |
4 | 3 | simp3d 996 | . . . . . . 7 |
5 | 4 | adantr 274 | . . . . . 6 |
6 | 5 | oveq1d 5836 | . . . . 5 |
7 | simpl 108 | . . . . . . . 8 | |
8 | 7 | flqcld 10169 | . . . . . . 7 |
9 | 8 | zcnd 9281 | . . . . . 6 |
10 | zq 9528 | . . . . . . . 8 | |
11 | 8, 10 | syl 14 | . . . . . . 7 |
12 | qsubcl 9540 | . . . . . . . 8 | |
13 | qcn 9536 | . . . . . . . 8 | |
14 | 12, 13 | syl 14 | . . . . . . 7 |
15 | 11, 14 | syldan 280 | . . . . . 6 |
16 | simpr 109 | . . . . . . 7 | |
17 | 16 | nncnd 8841 | . . . . . 6 |
18 | 16 | nnap0d 8873 | . . . . . 6 # |
19 | 9, 15, 17, 18 | divdirapd 8696 | . . . . 5 |
20 | 6, 19 | eqtrd 2190 | . . . 4 |
21 | flqcl 10165 | . . . . . 6 | |
22 | eqid 2157 | . . . . . . . 8 | |
23 | eqid 2157 | . . . . . . . 8 | |
24 | 22, 23 | intfracq 10212 | . . . . . . 7 |
25 | 24 | simp3d 996 | . . . . . 6 |
26 | 21, 25 | sylan 281 | . . . . 5 |
27 | 26 | oveq1d 5836 | . . . 4 |
28 | znq 9526 | . . . . . . . 8 | |
29 | 28 | flqcld 10169 | . . . . . . 7 |
30 | 21, 29 | sylan 281 | . . . . . 6 |
31 | 30 | zcnd 9281 | . . . . 5 |
32 | 8, 16, 28 | syl2anc 409 | . . . . . . 7 |
33 | zq 9528 | . . . . . . . 8 | |
34 | 30, 33 | syl 14 | . . . . . . 7 |
35 | qsubcl 9540 | . . . . . . 7 | |
36 | 32, 34, 35 | syl2anc 409 | . . . . . 6 |
37 | qcn 9536 | . . . . . 6 | |
38 | 36, 37 | syl 14 | . . . . 5 |
39 | 11, 12 | syldan 280 | . . . . . . 7 |
40 | nnq 9535 | . . . . . . . 8 | |
41 | 40 | adantl 275 | . . . . . . 7 |
42 | 16 | nnne0d 8872 | . . . . . . 7 |
43 | qdivcl 9545 | . . . . . . 7 | |
44 | 39, 41, 42, 43 | syl3anc 1220 | . . . . . 6 |
45 | qcn 9536 | . . . . . 6 | |
46 | 44, 45 | syl 14 | . . . . 5 |
47 | 31, 38, 46 | addassd 7894 | . . . 4 |
48 | 20, 27, 47 | 3eqtrd 2194 | . . 3 |
49 | 48 | fveq2d 5471 | . 2 |
50 | qre 9527 | . . . . 5 | |
51 | 36, 50 | syl 14 | . . . 4 |
52 | qre 9527 | . . . . . 6 | |
53 | 39, 52 | syl 14 | . . . . 5 |
54 | 53, 16 | nndivred 8877 | . . . 4 |
55 | 24 | simp1d 994 | . . . . 5 |
56 | 21, 55 | sylan 281 | . . . 4 |
57 | 16 | nnrpd 9594 | . . . . 5 |
58 | qfracge0 10173 | . . . . . 6 | |
59 | 58 | adantr 274 | . . . . 5 |
60 | 53, 57, 59 | divge0d 9637 | . . . 4 |
61 | 51, 54, 56, 60 | addge0d 8391 | . . 3 |
62 | nnre 8834 | . . . . . . . 8 | |
63 | peano2rem 8136 | . . . . . . . 8 | |
64 | 62, 63 | syl 14 | . . . . . . 7 |
65 | nnap0 8856 | . . . . . . 7 # | |
66 | 64, 62, 65 | redivclapd 8701 | . . . . . 6 |
67 | 66 | adantl 275 | . . . . 5 |
68 | 16 | nnrecred 8874 | . . . . 5 |
69 | 24 | simp2d 995 | . . . . . 6 |
70 | 21, 69 | sylan 281 | . . . . 5 |
71 | qfraclt1 10172 | . . . . . . 7 | |
72 | 71 | adantr 274 | . . . . . 6 |
73 | 16 | nnred 8840 | . . . . . . 7 |
74 | 16 | nngt0d 8871 | . . . . . . 7 |
75 | 1re 7871 | . . . . . . . 8 | |
76 | ltdiv1 8733 | . . . . . . . 8 | |
77 | 75, 76 | mp3an2 1307 | . . . . . . 7 |
78 | 53, 73, 74, 77 | syl12anc 1218 | . . . . . 6 |
79 | 72, 78 | mpbid 146 | . . . . 5 |
80 | 51, 54, 67, 68, 70, 79 | leltaddd 8435 | . . . 4 |
81 | nncn 8835 | . . . . . . . 8 | |
82 | npcan1 8247 | . . . . . . . 8 | |
83 | 81, 82 | syl 14 | . . . . . . 7 |
84 | 83 | oveq1d 5836 | . . . . . 6 |
85 | 64 | recnd 7900 | . . . . . . 7 |
86 | ax-1cn 7819 | . . . . . . . 8 | |
87 | divdirap 8564 | . . . . . . . 8 # | |
88 | 86, 87 | mp3an2 1307 | . . . . . . 7 # |
89 | 85, 81, 65, 88 | syl12anc 1218 | . . . . . 6 |
90 | 81, 65 | dividapd 8653 | . . . . . 6 |
91 | 84, 89, 90 | 3eqtr3d 2198 | . . . . 5 |
92 | 91 | adantl 275 | . . . 4 |
93 | 80, 92 | breqtrd 3990 | . . 3 |
94 | 32 | flqcld 10169 | . . . 4 |
95 | qaddcl 9537 | . . . . 5 | |
96 | 36, 44, 95 | syl2anc 409 | . . . 4 |
97 | flqbi2 10183 | . . . 4 | |
98 | 94, 96, 97 | syl2anc 409 | . . 3 |
99 | 61, 93, 98 | mpbir2and 929 | . 2 |
100 | 49, 99 | eqtr2d 2191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wne 2327 class class class wbr 3965 cfv 5169 (class class class)co 5821 cc 7724 cr 7725 cc0 7726 c1 7727 caddc 7729 clt 7906 cle 7907 cmin 8040 # cap 8450 cdiv 8539 cn 8827 cz 9161 cq 9521 cfl 10160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-po 4256 df-iso 4257 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-n0 9085 df-z 9162 df-q 9522 df-rp 9554 df-fl 10162 |
This theorem is referenced by: modqmulnn 10234 |
Copyright terms: Public domain | W3C validator |