ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqdiv Unicode version

Theorem flqdiv 9693
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
flqdiv  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )

Proof of Theorem flqdiv
StepHypRef Expression
1 eqid 2088 . . . . . . . . 9  |-  ( |_
`  A )  =  ( |_ `  A
)
2 eqid 2088 . . . . . . . . 9  |-  ( A  -  ( |_ `  A ) )  =  ( A  -  ( |_ `  A ) )
31, 2intqfrac2 9691 . . . . . . . 8  |-  ( A  e.  QQ  ->  (
0  <_  ( A  -  ( |_ `  A ) )  /\  ( A  -  ( |_ `  A ) )  <  1  /\  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) ) )
43simp3d 957 . . . . . . 7  |-  ( A  e.  QQ  ->  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) )
54adantr 270 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  =  ( ( |_ `  A )  +  ( A  -  ( |_ `  A ) ) ) )
65oveq1d 5649 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  +  ( A  -  ( |_ `  A ) ) )  /  N ) )
7 simpl 107 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  e.  QQ )
87flqcld 9649 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  ZZ )
98zcnd 8839 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  CC )
10 zq 9080 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
118, 10syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  QQ )
12 qsubcl 9092 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  QQ )
13 qcn 9088 . . . . . . . 8  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  CC )
1412, 13syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  CC )
1511, 14syldan 276 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  CC )
16 simpr 108 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  NN )
1716nncnd 8408 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  CC )
1816nnap0d 8439 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N #  0 )
199, 15, 17, 18divdirapd 8268 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) )  /  N )  =  ( ( ( |_ `  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
206, 19eqtrd 2120 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
21 flqcl 9645 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
22 eqid 2088 . . . . . . . 8  |-  ( |_
`  ( ( |_
`  A )  /  N ) )  =  ( |_ `  (
( |_ `  A
)  /  N ) )
23 eqid 2088 . . . . . . . 8  |-  ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  =  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )
2422, 23intfracq 9692 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  /\  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N )  /\  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) ) )
2524simp3d 957 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2621, 25sylan 277 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2726oveq1d 5649 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  =  ( ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
28 znq 9078 . . . . . . . 8  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
2928flqcld 9649 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3021, 29sylan 277 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3130zcnd 8839 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  CC )
328, 16, 28syl2anc 403 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
33 zq 9080 . . . . . . . 8  |-  ( ( |_ `  ( ( |_ `  A )  /  N ) )  e.  ZZ  ->  ( |_ `  ( ( |_
`  A )  /  N ) )  e.  QQ )
3430, 33syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  QQ )
35 qsubcl 9092 . . . . . . 7  |-  ( ( ( ( |_ `  A )  /  N
)  e.  QQ  /\  ( |_ `  ( ( |_ `  A )  /  N ) )  e.  QQ )  -> 
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
3632, 34, 35syl2anc 403 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
37 qcn 9088 . . . . . 6  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3836, 37syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3911, 12syldan 276 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  QQ )
40 nnq 9087 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  QQ )
4140adantl 271 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  QQ )
4216nnne0d 8438 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  =/=  0 )
43 qdivcl 9097 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  QQ  /\  N  e.  QQ  /\  N  =/=  0 )  ->  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
4439, 41, 42, 43syl3anc 1174 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
45 qcn 9088 . . . . . 6  |-  ( ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4644, 45syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4731, 38, 46addassd 7489 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  =  ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) ) ) )
4820, 27, 473eqtrd 2124 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )
4948fveq2d 5293 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  ( A  /  N ) )  =  ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) ) )
50 qre 9079 . . . . 5  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  RR )
5136, 50syl 14 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  RR )
52 qre 9079 . . . . . 6  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5339, 52syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5453, 16nndivred 8443 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  RR )
5524simp1d 955 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5621, 55sylan 277 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5716nnrpd 9141 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR+ )
58 qfracge0 9653 . . . . . 6  |-  ( A  e.  QQ  ->  0  <_  ( A  -  ( |_ `  A ) ) )
5958adantr 270 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( A  -  ( |_ `  A ) ) )
6053, 57, 59divge0d 9183 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( ( A  -  ( |_ `  A ) )  /  N ) )
6151, 54, 56, 60addge0d 7975 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
62 nnre 8401 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
63 peano2rem 7728 . . . . . . . 8  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
6462, 63syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
65 nnap0 8423 . . . . . . 7  |-  ( N  e.  NN  ->  N #  0 )
6664, 62, 65redivclapd 8273 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  e.  RR )
6766adantl 271 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( N  - 
1 )  /  N
)  e.  RR )
6816nnrecred 8440 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( 1  /  N
)  e.  RR )
6924simp2d 956 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
7021, 69sylan 277 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
71 qfraclt1 9652 . . . . . . 7  |-  ( A  e.  QQ  ->  ( A  -  ( |_ `  A ) )  <  1 )
7271adantr 270 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  <  1 )
7316nnred 8407 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR )
7416nngt0d 8437 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <  N )
75 1re 7466 . . . . . . . 8  |-  1  e.  RR
76 ltdiv1 8301 . . . . . . . 8  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7775, 76mp3an2 1261 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7853, 73, 74, 77syl12anc 1172 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7972, 78mpbid 145 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  <  ( 1  /  N ) )
8051, 54, 67, 68, 70, 79leltaddd 8019 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
81 nncn 8402 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
82 npcan1 7835 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
8381, 82syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
8483oveq1d 5649 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( N  /  N ) )
8564recnd 7495 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
86 ax-1cn 7417 . . . . . . . 8  |-  1  e.  CC
87 divdirap 8138 . . . . . . . 8  |-  ( ( ( N  -  1 )  e.  CC  /\  1  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  -> 
( ( ( N  -  1 )  +  1 )  /  N
)  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) ) )
8886, 87mp3an2 1261 . . . . . . 7  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  ->  ( ( ( N  -  1 )  +  1 )  /  N )  =  ( ( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) ) )
8985, 81, 65, 88syl12anc 1172 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
9081, 65dividapd 8227 . . . . . 6  |-  ( N  e.  NN  ->  ( N  /  N )  =  1 )
9184, 89, 903eqtr3d 2128 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) )  =  1 )
9291adantl 271 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) )  =  1 )
9380, 92breqtrd 3861 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  1 )
9432flqcld 9649 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
95 qaddcl 9089 . . . . 5  |-  ( ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ  /\  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )  ->  (
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  e.  QQ )
9636, 44, 95syl2anc 403 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )
97 flqbi2 9663 . . . 4  |-  ( ( ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ  /\  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )  -> 
( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9894, 96, 97syl2anc 403 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9961, 93, 98mpbir2and 890 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  (
( |_ `  A
)  /  N ) )  +  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) ) )
10049, 99eqtr2d 2121 1  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438    =/= wne 2255   class class class wbr 3837   ` cfv 5002  (class class class)co 5634   CCcc 7327   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    < clt 7501    <_ cle 7502    - cmin 7632   # cap 8034    / cdiv 8113   NNcn 8394   ZZcz 8720   QQcq 9073   |_cfl 9640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-q 9074  df-rp 9104  df-fl 9642
This theorem is referenced by:  modqmulnn  9714
  Copyright terms: Public domain W3C validator