ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqdiv Unicode version

Theorem flqdiv 10413
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
flqdiv  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )

Proof of Theorem flqdiv
StepHypRef Expression
1 eqid 2196 . . . . . . . . 9  |-  ( |_
`  A )  =  ( |_ `  A
)
2 eqid 2196 . . . . . . . . 9  |-  ( A  -  ( |_ `  A ) )  =  ( A  -  ( |_ `  A ) )
31, 2intqfrac2 10411 . . . . . . . 8  |-  ( A  e.  QQ  ->  (
0  <_  ( A  -  ( |_ `  A ) )  /\  ( A  -  ( |_ `  A ) )  <  1  /\  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) ) )
43simp3d 1013 . . . . . . 7  |-  ( A  e.  QQ  ->  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) )
54adantr 276 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  =  ( ( |_ `  A )  +  ( A  -  ( |_ `  A ) ) ) )
65oveq1d 5937 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  +  ( A  -  ( |_ `  A ) ) )  /  N ) )
7 simpl 109 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  e.  QQ )
87flqcld 10367 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  ZZ )
98zcnd 9449 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  CC )
10 zq 9700 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
118, 10syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  QQ )
12 qsubcl 9712 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  QQ )
13 qcn 9708 . . . . . . . 8  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  CC )
1412, 13syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  CC )
1511, 14syldan 282 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  CC )
16 simpr 110 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  NN )
1716nncnd 9004 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  CC )
1816nnap0d 9036 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N #  0 )
199, 15, 17, 18divdirapd 8856 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) )  /  N )  =  ( ( ( |_ `  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
206, 19eqtrd 2229 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
21 flqcl 10363 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
22 eqid 2196 . . . . . . . 8  |-  ( |_
`  ( ( |_
`  A )  /  N ) )  =  ( |_ `  (
( |_ `  A
)  /  N ) )
23 eqid 2196 . . . . . . . 8  |-  ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  =  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )
2422, 23intfracq 10412 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  /\  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N )  /\  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) ) )
2524simp3d 1013 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2621, 25sylan 283 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2726oveq1d 5937 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  =  ( ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
28 znq 9698 . . . . . . . 8  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
2928flqcld 10367 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3021, 29sylan 283 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3130zcnd 9449 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  CC )
328, 16, 28syl2anc 411 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
33 zq 9700 . . . . . . . 8  |-  ( ( |_ `  ( ( |_ `  A )  /  N ) )  e.  ZZ  ->  ( |_ `  ( ( |_
`  A )  /  N ) )  e.  QQ )
3430, 33syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  QQ )
35 qsubcl 9712 . . . . . . 7  |-  ( ( ( ( |_ `  A )  /  N
)  e.  QQ  /\  ( |_ `  ( ( |_ `  A )  /  N ) )  e.  QQ )  -> 
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
3632, 34, 35syl2anc 411 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
37 qcn 9708 . . . . . 6  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3836, 37syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3911, 12syldan 282 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  QQ )
40 nnq 9707 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  QQ )
4140adantl 277 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  QQ )
4216nnne0d 9035 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  =/=  0 )
43 qdivcl 9717 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  QQ  /\  N  e.  QQ  /\  N  =/=  0 )  ->  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
4439, 41, 42, 43syl3anc 1249 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
45 qcn 9708 . . . . . 6  |-  ( ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4644, 45syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4731, 38, 46addassd 8049 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  =  ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) ) ) )
4820, 27, 473eqtrd 2233 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )
4948fveq2d 5562 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  ( A  /  N ) )  =  ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) ) )
50 qre 9699 . . . . 5  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  RR )
5136, 50syl 14 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  RR )
52 qre 9699 . . . . . 6  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5339, 52syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5453, 16nndivred 9040 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  RR )
5524simp1d 1011 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5621, 55sylan 283 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5716nnrpd 9769 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR+ )
58 qfracge0 10371 . . . . . 6  |-  ( A  e.  QQ  ->  0  <_  ( A  -  ( |_ `  A ) ) )
5958adantr 276 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( A  -  ( |_ `  A ) ) )
6053, 57, 59divge0d 9812 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( ( A  -  ( |_ `  A ) )  /  N ) )
6151, 54, 56, 60addge0d 8549 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
62 nnre 8997 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
63 peano2rem 8293 . . . . . . . 8  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
6462, 63syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
65 nnap0 9019 . . . . . . 7  |-  ( N  e.  NN  ->  N #  0 )
6664, 62, 65redivclapd 8862 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  e.  RR )
6766adantl 277 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( N  - 
1 )  /  N
)  e.  RR )
6816nnrecred 9037 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( 1  /  N
)  e.  RR )
6924simp2d 1012 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
7021, 69sylan 283 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
71 qfraclt1 10370 . . . . . . 7  |-  ( A  e.  QQ  ->  ( A  -  ( |_ `  A ) )  <  1 )
7271adantr 276 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  <  1 )
7316nnred 9003 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR )
7416nngt0d 9034 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <  N )
75 1re 8025 . . . . . . . 8  |-  1  e.  RR
76 ltdiv1 8895 . . . . . . . 8  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7775, 76mp3an2 1336 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7853, 73, 74, 77syl12anc 1247 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7972, 78mpbid 147 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  <  ( 1  /  N ) )
8051, 54, 67, 68, 70, 79leltaddd 8593 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
81 nncn 8998 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
82 npcan1 8404 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
8381, 82syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
8483oveq1d 5937 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( N  /  N ) )
8564recnd 8055 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
86 ax-1cn 7972 . . . . . . . 8  |-  1  e.  CC
87 divdirap 8724 . . . . . . . 8  |-  ( ( ( N  -  1 )  e.  CC  /\  1  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  -> 
( ( ( N  -  1 )  +  1 )  /  N
)  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) ) )
8886, 87mp3an2 1336 . . . . . . 7  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  ->  ( ( ( N  -  1 )  +  1 )  /  N )  =  ( ( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) ) )
8985, 81, 65, 88syl12anc 1247 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
9081, 65dividapd 8813 . . . . . 6  |-  ( N  e.  NN  ->  ( N  /  N )  =  1 )
9184, 89, 903eqtr3d 2237 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) )  =  1 )
9291adantl 277 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) )  =  1 )
9380, 92breqtrd 4059 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  1 )
9432flqcld 10367 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
95 qaddcl 9709 . . . . 5  |-  ( ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ  /\  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )  ->  (
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  e.  QQ )
9636, 44, 95syl2anc 411 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )
97 flqbi2 10381 . . . 4  |-  ( ( ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ  /\  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )  -> 
( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9894, 96, 97syl2anc 411 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9961, 93, 98mpbir2and 946 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  (
( |_ `  A
)  /  N ) )  +  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) ) )
10049, 99eqtr2d 2230 1  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062    - cmin 8197   # cap 8608    / cdiv 8699   NNcn 8990   ZZcz 9326   QQcq 9693   |_cfl 10358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360
This theorem is referenced by:  modqmulnn  10434  bitsp1  12115
  Copyright terms: Public domain W3C validator