ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqdiv Unicode version

Theorem flqdiv 10530
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
flqdiv  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )

Proof of Theorem flqdiv
StepHypRef Expression
1 eqid 2229 . . . . . . . . 9  |-  ( |_
`  A )  =  ( |_ `  A
)
2 eqid 2229 . . . . . . . . 9  |-  ( A  -  ( |_ `  A ) )  =  ( A  -  ( |_ `  A ) )
31, 2intqfrac2 10528 . . . . . . . 8  |-  ( A  e.  QQ  ->  (
0  <_  ( A  -  ( |_ `  A ) )  /\  ( A  -  ( |_ `  A ) )  <  1  /\  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) ) )
43simp3d 1035 . . . . . . 7  |-  ( A  e.  QQ  ->  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) )
54adantr 276 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  =  ( ( |_ `  A )  +  ( A  -  ( |_ `  A ) ) ) )
65oveq1d 6009 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  +  ( A  -  ( |_ `  A ) ) )  /  N ) )
7 simpl 109 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  e.  QQ )
87flqcld 10484 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  ZZ )
98zcnd 9558 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  CC )
10 zq 9809 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
118, 10syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  QQ )
12 qsubcl 9821 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  QQ )
13 qcn 9817 . . . . . . . 8  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  CC )
1412, 13syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  CC )
1511, 14syldan 282 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  CC )
16 simpr 110 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  NN )
1716nncnd 9112 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  CC )
1816nnap0d 9144 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N #  0 )
199, 15, 17, 18divdirapd 8964 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) )  /  N )  =  ( ( ( |_ `  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
206, 19eqtrd 2262 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
21 flqcl 10480 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
22 eqid 2229 . . . . . . . 8  |-  ( |_
`  ( ( |_
`  A )  /  N ) )  =  ( |_ `  (
( |_ `  A
)  /  N ) )
23 eqid 2229 . . . . . . . 8  |-  ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  =  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )
2422, 23intfracq 10529 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  /\  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N )  /\  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) ) )
2524simp3d 1035 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2621, 25sylan 283 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2726oveq1d 6009 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  =  ( ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
28 znq 9807 . . . . . . . 8  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
2928flqcld 10484 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3021, 29sylan 283 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3130zcnd 9558 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  CC )
328, 16, 28syl2anc 411 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
33 zq 9809 . . . . . . . 8  |-  ( ( |_ `  ( ( |_ `  A )  /  N ) )  e.  ZZ  ->  ( |_ `  ( ( |_
`  A )  /  N ) )  e.  QQ )
3430, 33syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  QQ )
35 qsubcl 9821 . . . . . . 7  |-  ( ( ( ( |_ `  A )  /  N
)  e.  QQ  /\  ( |_ `  ( ( |_ `  A )  /  N ) )  e.  QQ )  -> 
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
3632, 34, 35syl2anc 411 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
37 qcn 9817 . . . . . 6  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3836, 37syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3911, 12syldan 282 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  QQ )
40 nnq 9816 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  QQ )
4140adantl 277 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  QQ )
4216nnne0d 9143 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  =/=  0 )
43 qdivcl 9826 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  QQ  /\  N  e.  QQ  /\  N  =/=  0 )  ->  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
4439, 41, 42, 43syl3anc 1271 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
45 qcn 9817 . . . . . 6  |-  ( ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4644, 45syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4731, 38, 46addassd 8157 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  =  ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) ) ) )
4820, 27, 473eqtrd 2266 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )
4948fveq2d 5627 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  ( A  /  N ) )  =  ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) ) )
50 qre 9808 . . . . 5  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  RR )
5136, 50syl 14 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  RR )
52 qre 9808 . . . . . 6  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5339, 52syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5453, 16nndivred 9148 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  RR )
5524simp1d 1033 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5621, 55sylan 283 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5716nnrpd 9878 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR+ )
58 qfracge0 10488 . . . . . 6  |-  ( A  e.  QQ  ->  0  <_  ( A  -  ( |_ `  A ) ) )
5958adantr 276 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( A  -  ( |_ `  A ) ) )
6053, 57, 59divge0d 9921 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( ( A  -  ( |_ `  A ) )  /  N ) )
6151, 54, 56, 60addge0d 8657 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
62 nnre 9105 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
63 peano2rem 8401 . . . . . . . 8  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
6462, 63syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
65 nnap0 9127 . . . . . . 7  |-  ( N  e.  NN  ->  N #  0 )
6664, 62, 65redivclapd 8970 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  e.  RR )
6766adantl 277 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( N  - 
1 )  /  N
)  e.  RR )
6816nnrecred 9145 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( 1  /  N
)  e.  RR )
6924simp2d 1034 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
7021, 69sylan 283 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
71 qfraclt1 10487 . . . . . . 7  |-  ( A  e.  QQ  ->  ( A  -  ( |_ `  A ) )  <  1 )
7271adantr 276 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  <  1 )
7316nnred 9111 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR )
7416nngt0d 9142 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <  N )
75 1re 8133 . . . . . . . 8  |-  1  e.  RR
76 ltdiv1 9003 . . . . . . . 8  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7775, 76mp3an2 1359 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7853, 73, 74, 77syl12anc 1269 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7972, 78mpbid 147 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  <  ( 1  /  N ) )
8051, 54, 67, 68, 70, 79leltaddd 8701 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
81 nncn 9106 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
82 npcan1 8512 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
8381, 82syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
8483oveq1d 6009 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( N  /  N ) )
8564recnd 8163 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
86 ax-1cn 8080 . . . . . . . 8  |-  1  e.  CC
87 divdirap 8832 . . . . . . . 8  |-  ( ( ( N  -  1 )  e.  CC  /\  1  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  -> 
( ( ( N  -  1 )  +  1 )  /  N
)  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) ) )
8886, 87mp3an2 1359 . . . . . . 7  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  ->  ( ( ( N  -  1 )  +  1 )  /  N )  =  ( ( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) ) )
8985, 81, 65, 88syl12anc 1269 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
9081, 65dividapd 8921 . . . . . 6  |-  ( N  e.  NN  ->  ( N  /  N )  =  1 )
9184, 89, 903eqtr3d 2270 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) )  =  1 )
9291adantl 277 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) )  =  1 )
9380, 92breqtrd 4108 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  1 )
9432flqcld 10484 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
95 qaddcl 9818 . . . . 5  |-  ( ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ  /\  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )  ->  (
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  e.  QQ )
9636, 44, 95syl2anc 411 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )
97 flqbi2 10498 . . . 4  |-  ( ( ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ  /\  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )  -> 
( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9894, 96, 97syl2anc 411 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9961, 93, 98mpbir2and 950 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  (
( |_ `  A
)  /  N ) )  +  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) ) )
10049, 99eqtr2d 2263 1  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   CCcc 7985   RRcr 7986   0cc0 7987   1c1 7988    + caddc 7990    < clt 8169    <_ cle 8170    - cmin 8305   # cap 8716    / cdiv 8807   NNcn 9098   ZZcz 9434   QQcq 9802   |_cfl 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-q 9803  df-rp 9838  df-fl 10477
This theorem is referenced by:  modqmulnn  10551  bitsp1  12448
  Copyright terms: Public domain W3C validator