| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqdiv | Unicode version | ||
| Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqdiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . . . . . . . 9
| |
| 2 | eqid 2196 |
. . . . . . . . 9
| |
| 3 | 1, 2 | intqfrac2 10428 |
. . . . . . . 8
|
| 4 | 3 | simp3d 1013 |
. . . . . . 7
|
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | 5 | oveq1d 5940 |
. . . . 5
|
| 7 | simpl 109 |
. . . . . . . 8
| |
| 8 | 7 | flqcld 10384 |
. . . . . . 7
|
| 9 | 8 | zcnd 9466 |
. . . . . 6
|
| 10 | zq 9717 |
. . . . . . . 8
| |
| 11 | 8, 10 | syl 14 |
. . . . . . 7
|
| 12 | qsubcl 9729 |
. . . . . . . 8
| |
| 13 | qcn 9725 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 11, 14 | syldan 282 |
. . . . . 6
|
| 16 | simpr 110 |
. . . . . . 7
| |
| 17 | 16 | nncnd 9021 |
. . . . . 6
|
| 18 | 16 | nnap0d 9053 |
. . . . . 6
|
| 19 | 9, 15, 17, 18 | divdirapd 8873 |
. . . . 5
|
| 20 | 6, 19 | eqtrd 2229 |
. . . 4
|
| 21 | flqcl 10380 |
. . . . . 6
| |
| 22 | eqid 2196 |
. . . . . . . 8
| |
| 23 | eqid 2196 |
. . . . . . . 8
| |
| 24 | 22, 23 | intfracq 10429 |
. . . . . . 7
|
| 25 | 24 | simp3d 1013 |
. . . . . 6
|
| 26 | 21, 25 | sylan 283 |
. . . . 5
|
| 27 | 26 | oveq1d 5940 |
. . . 4
|
| 28 | znq 9715 |
. . . . . . . 8
| |
| 29 | 28 | flqcld 10384 |
. . . . . . 7
|
| 30 | 21, 29 | sylan 283 |
. . . . . 6
|
| 31 | 30 | zcnd 9466 |
. . . . 5
|
| 32 | 8, 16, 28 | syl2anc 411 |
. . . . . . 7
|
| 33 | zq 9717 |
. . . . . . . 8
| |
| 34 | 30, 33 | syl 14 |
. . . . . . 7
|
| 35 | qsubcl 9729 |
. . . . . . 7
| |
| 36 | 32, 34, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | qcn 9725 |
. . . . . 6
| |
| 38 | 36, 37 | syl 14 |
. . . . 5
|
| 39 | 11, 12 | syldan 282 |
. . . . . . 7
|
| 40 | nnq 9724 |
. . . . . . . 8
| |
| 41 | 40 | adantl 277 |
. . . . . . 7
|
| 42 | 16 | nnne0d 9052 |
. . . . . . 7
|
| 43 | qdivcl 9734 |
. . . . . . 7
| |
| 44 | 39, 41, 42, 43 | syl3anc 1249 |
. . . . . 6
|
| 45 | qcn 9725 |
. . . . . 6
| |
| 46 | 44, 45 | syl 14 |
. . . . 5
|
| 47 | 31, 38, 46 | addassd 8066 |
. . . 4
|
| 48 | 20, 27, 47 | 3eqtrd 2233 |
. . 3
|
| 49 | 48 | fveq2d 5565 |
. 2
|
| 50 | qre 9716 |
. . . . 5
| |
| 51 | 36, 50 | syl 14 |
. . . 4
|
| 52 | qre 9716 |
. . . . . 6
| |
| 53 | 39, 52 | syl 14 |
. . . . 5
|
| 54 | 53, 16 | nndivred 9057 |
. . . 4
|
| 55 | 24 | simp1d 1011 |
. . . . 5
|
| 56 | 21, 55 | sylan 283 |
. . . 4
|
| 57 | 16 | nnrpd 9786 |
. . . . 5
|
| 58 | qfracge0 10388 |
. . . . . 6
| |
| 59 | 58 | adantr 276 |
. . . . 5
|
| 60 | 53, 57, 59 | divge0d 9829 |
. . . 4
|
| 61 | 51, 54, 56, 60 | addge0d 8566 |
. . 3
|
| 62 | nnre 9014 |
. . . . . . . 8
| |
| 63 | peano2rem 8310 |
. . . . . . . 8
| |
| 64 | 62, 63 | syl 14 |
. . . . . . 7
|
| 65 | nnap0 9036 |
. . . . . . 7
| |
| 66 | 64, 62, 65 | redivclapd 8879 |
. . . . . 6
|
| 67 | 66 | adantl 277 |
. . . . 5
|
| 68 | 16 | nnrecred 9054 |
. . . . 5
|
| 69 | 24 | simp2d 1012 |
. . . . . 6
|
| 70 | 21, 69 | sylan 283 |
. . . . 5
|
| 71 | qfraclt1 10387 |
. . . . . . 7
| |
| 72 | 71 | adantr 276 |
. . . . . 6
|
| 73 | 16 | nnred 9020 |
. . . . . . 7
|
| 74 | 16 | nngt0d 9051 |
. . . . . . 7
|
| 75 | 1re 8042 |
. . . . . . . 8
| |
| 76 | ltdiv1 8912 |
. . . . . . . 8
| |
| 77 | 75, 76 | mp3an2 1336 |
. . . . . . 7
|
| 78 | 53, 73, 74, 77 | syl12anc 1247 |
. . . . . 6
|
| 79 | 72, 78 | mpbid 147 |
. . . . 5
|
| 80 | 51, 54, 67, 68, 70, 79 | leltaddd 8610 |
. . . 4
|
| 81 | nncn 9015 |
. . . . . . . 8
| |
| 82 | npcan1 8421 |
. . . . . . . 8
| |
| 83 | 81, 82 | syl 14 |
. . . . . . 7
|
| 84 | 83 | oveq1d 5940 |
. . . . . 6
|
| 85 | 64 | recnd 8072 |
. . . . . . 7
|
| 86 | ax-1cn 7989 |
. . . . . . . 8
| |
| 87 | divdirap 8741 |
. . . . . . . 8
| |
| 88 | 86, 87 | mp3an2 1336 |
. . . . . . 7
|
| 89 | 85, 81, 65, 88 | syl12anc 1247 |
. . . . . 6
|
| 90 | 81, 65 | dividapd 8830 |
. . . . . 6
|
| 91 | 84, 89, 90 | 3eqtr3d 2237 |
. . . . 5
|
| 92 | 91 | adantl 277 |
. . . 4
|
| 93 | 80, 92 | breqtrd 4060 |
. . 3
|
| 94 | 32 | flqcld 10384 |
. . . 4
|
| 95 | qaddcl 9726 |
. . . . 5
| |
| 96 | 36, 44, 95 | syl2anc 411 |
. . . 4
|
| 97 | flqbi2 10398 |
. . . 4
| |
| 98 | 94, 96, 97 | syl2anc 411 |
. . 3
|
| 99 | 61, 93, 98 | mpbir2and 946 |
. 2
|
| 100 | 49, 99 | eqtr2d 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 |
| This theorem is referenced by: modqmulnn 10451 bitsp1 12133 |
| Copyright terms: Public domain | W3C validator |