ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep Unicode version

Theorem exbtwnzlemstep 10018
Description: Lemma for exbtwnzlemex 10020. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k  |-  ( ph  ->  K  e.  NN )
exbtwnzlemstep.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemstep.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemstep  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Distinct variable groups:    A, m, n   
m, K, n    ph, m, n

Proof of Theorem exbtwnzlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simpllr 523 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  ZZ )
2 exbtwnzlemstep.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
32ad3antrrr 483 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  NN )
43nnzd 9165 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  ZZ )
51, 4zaddcld 9170 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  ZZ )
6 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  <_  A )
7 exbtwnzlemstep.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
87ad3antrrr 483 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  e.  RR )
95zred 9166 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  RR )
10 1red 7774 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  RR )
119, 10readdcld 7788 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  e.  RR )
123nnred 8726 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  RR )
139, 12readdcld 7788 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  K )  e.  RR )
14 simplrr 525 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( m  +  ( K  +  1 ) ) )
151zcnd 9167 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  CC )
163nncnd 8727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  CC )
17 1cnd 7775 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  CC )
1815, 16, 17addassd 7781 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  =  ( m  +  ( K  +  1
) ) )
1914, 18breqtrrd 3951 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  1 ) )
203nnge1d 8756 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  <_  K )
2110, 12, 9, 20leadd2dd 8315 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  <_  ( ( m  +  K )  +  K ) )
228, 11, 13, 19, 21ltletrd 8178 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  K
) )
23 breq1 3927 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  (
j  <_  A  <->  ( m  +  K )  <_  A
) )
24 oveq1 5774 . . . . . . . . . 10  |-  ( j  =  ( m  +  K )  ->  (
j  +  K )  =  ( ( m  +  K )  +  K ) )
2524breq2d 3936 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  K
)  +  K ) ) )
2623, 25anbi12d 464 . . . . . . . 8  |-  ( j  =  ( m  +  K )  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) ) )
2726rspcev 2784 . . . . . . 7  |-  ( ( ( m  +  K
)  e.  ZZ  /\  ( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
285, 6, 22, 27syl12anc 1214 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
29 simpllr 523 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  e.  ZZ )
30 simplrl 524 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  <_  A )
31 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  A  <  ( m  +  K
) )
32 breq1 3927 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <_  A  <->  m  <_  A ) )
33 oveq1 5774 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
3433breq2d 3936 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
3532, 34anbi12d 464 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  K ) ) ) )
3635rspcev 2784 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <_  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
3729, 30, 31, 36syl12anc 1214 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
38 breq1 3927 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  (
n  <_  A  <->  ( m  +  K )  <_  A
) )
39 breq2 3928 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  ( A  <  n  <->  A  <  ( m  +  K ) ) )
4038, 39orbi12d 782 . . . . . . 7  |-  ( n  =  ( m  +  K )  ->  (
( n  <_  A  \/  A  <  n )  <-> 
( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) ) )
41 exbtwnzlemstep.tri . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
4241ralrimiva 2503 . . . . . . . 8  |-  ( ph  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
4342ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
44 simplr 519 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  m  e.  ZZ )
452ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  NN )
4645nnzd 9165 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  ZZ )
4744, 46zaddcld 9170 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( m  +  K )  e.  ZZ )
4840, 43, 47rspcdva 2789 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) )
4928, 37, 48mpjaodan 787 . . . . 5  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
5049ex 114 . . . 4  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2547 . . 3  |-  ( ph  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) ) )
5251imp 123 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
53 breq1 3927 . . . 4  |-  ( m  =  j  ->  (
m  <_  A  <->  j  <_  A ) )
54 oveq1 5774 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 3936 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 464 . . 3  |-  ( m  =  j  ->  (
( m  <_  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2653 . 2  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
5852, 57sylibr 133 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   RRcr 7612   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794   NNcn 8713   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048
This theorem is referenced by:  exbtwnzlemshrink  10019
  Copyright terms: Public domain W3C validator