ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep Unicode version

Theorem exbtwnzlemstep 10316
Description: Lemma for exbtwnzlemex 10318. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k  |-  ( ph  ->  K  e.  NN )
exbtwnzlemstep.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemstep.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemstep  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Distinct variable groups:    A, m, n   
m, K, n    ph, m, n

Proof of Theorem exbtwnzlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  ZZ )
2 exbtwnzlemstep.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
32ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  NN )
43nnzd 9438 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  ZZ )
51, 4zaddcld 9443 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  ZZ )
6 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  <_  A )
7 exbtwnzlemstep.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
87ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  e.  RR )
95zred 9439 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  RR )
10 1red 8034 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  RR )
119, 10readdcld 8049 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  e.  RR )
123nnred 8995 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  RR )
139, 12readdcld 8049 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  K )  e.  RR )
14 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( m  +  ( K  +  1 ) ) )
151zcnd 9440 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  CC )
163nncnd 8996 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  CC )
17 1cnd 8035 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  CC )
1815, 16, 17addassd 8042 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  =  ( m  +  ( K  +  1
) ) )
1914, 18breqtrrd 4057 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  1 ) )
203nnge1d 9025 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  <_  K )
2110, 12, 9, 20leadd2dd 8579 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  <_  ( ( m  +  K )  +  K ) )
228, 11, 13, 19, 21ltletrd 8442 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  K
) )
23 breq1 4032 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  (
j  <_  A  <->  ( m  +  K )  <_  A
) )
24 oveq1 5925 . . . . . . . . . 10  |-  ( j  =  ( m  +  K )  ->  (
j  +  K )  =  ( ( m  +  K )  +  K ) )
2524breq2d 4041 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  K
)  +  K ) ) )
2623, 25anbi12d 473 . . . . . . . 8  |-  ( j  =  ( m  +  K )  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) ) )
2726rspcev 2864 . . . . . . 7  |-  ( ( ( m  +  K
)  e.  ZZ  /\  ( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
285, 6, 22, 27syl12anc 1247 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
29 simpllr 534 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  e.  ZZ )
30 simplrl 535 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  <_  A )
31 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  A  <  ( m  +  K
) )
32 breq1 4032 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <_  A  <->  m  <_  A ) )
33 oveq1 5925 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
3433breq2d 4041 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
3532, 34anbi12d 473 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  K ) ) ) )
3635rspcev 2864 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <_  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
3729, 30, 31, 36syl12anc 1247 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
38 breq1 4032 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  (
n  <_  A  <->  ( m  +  K )  <_  A
) )
39 breq2 4033 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  ( A  <  n  <->  A  <  ( m  +  K ) ) )
4038, 39orbi12d 794 . . . . . . 7  |-  ( n  =  ( m  +  K )  ->  (
( n  <_  A  \/  A  <  n )  <-> 
( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) ) )
41 exbtwnzlemstep.tri . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
4241ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
4342ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
44 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  m  e.  ZZ )
452ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  NN )
4645nnzd 9438 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  ZZ )
4744, 46zaddcld 9443 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( m  +  K )  e.  ZZ )
4840, 43, 47rspcdva 2869 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) )
4928, 37, 48mpjaodan 799 . . . . 5  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
5049ex 115 . . . 4  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2611 . . 3  |-  ( ph  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) ) )
5251imp 124 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
53 breq1 4032 . . . 4  |-  ( m  =  j  ->  (
m  <_  A  <->  j  <_  A ) )
54 oveq1 5925 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 4041 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 473 . . 3  |-  ( m  =  j  ->  (
( m  <_  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2727 . 2  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
5852, 57sylibr 134 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   RRcr 7871   1c1 7873    + caddc 7875    < clt 8054    <_ cle 8055   NNcn 8982   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  exbtwnzlemshrink  10317
  Copyright terms: Public domain W3C validator