ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep Unicode version

Theorem exbtwnzlemstep 10467
Description: Lemma for exbtwnzlemex 10469. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k  |-  ( ph  ->  K  e.  NN )
exbtwnzlemstep.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemstep.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemstep  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Distinct variable groups:    A, m, n   
m, K, n    ph, m, n

Proof of Theorem exbtwnzlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  ZZ )
2 exbtwnzlemstep.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
32ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  NN )
43nnzd 9568 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  ZZ )
51, 4zaddcld 9573 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  ZZ )
6 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  <_  A )
7 exbtwnzlemstep.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
87ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  e.  RR )
95zred 9569 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  RR )
10 1red 8161 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  RR )
119, 10readdcld 8176 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  e.  RR )
123nnred 9123 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  RR )
139, 12readdcld 8176 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  K )  e.  RR )
14 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( m  +  ( K  +  1 ) ) )
151zcnd 9570 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  CC )
163nncnd 9124 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  CC )
17 1cnd 8162 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  CC )
1815, 16, 17addassd 8169 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  =  ( m  +  ( K  +  1
) ) )
1914, 18breqtrrd 4111 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  1 ) )
203nnge1d 9153 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  <_  K )
2110, 12, 9, 20leadd2dd 8707 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  <_  ( ( m  +  K )  +  K ) )
228, 11, 13, 19, 21ltletrd 8570 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  K
) )
23 breq1 4086 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  (
j  <_  A  <->  ( m  +  K )  <_  A
) )
24 oveq1 6008 . . . . . . . . . 10  |-  ( j  =  ( m  +  K )  ->  (
j  +  K )  =  ( ( m  +  K )  +  K ) )
2524breq2d 4095 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  K
)  +  K ) ) )
2623, 25anbi12d 473 . . . . . . . 8  |-  ( j  =  ( m  +  K )  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) ) )
2726rspcev 2907 . . . . . . 7  |-  ( ( ( m  +  K
)  e.  ZZ  /\  ( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
285, 6, 22, 27syl12anc 1269 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
29 simpllr 534 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  e.  ZZ )
30 simplrl 535 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  <_  A )
31 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  A  <  ( m  +  K
) )
32 breq1 4086 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <_  A  <->  m  <_  A ) )
33 oveq1 6008 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
3433breq2d 4095 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
3532, 34anbi12d 473 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  K ) ) ) )
3635rspcev 2907 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <_  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
3729, 30, 31, 36syl12anc 1269 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
38 breq1 4086 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  (
n  <_  A  <->  ( m  +  K )  <_  A
) )
39 breq2 4087 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  ( A  <  n  <->  A  <  ( m  +  K ) ) )
4038, 39orbi12d 798 . . . . . . 7  |-  ( n  =  ( m  +  K )  ->  (
( n  <_  A  \/  A  <  n )  <-> 
( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) ) )
41 exbtwnzlemstep.tri . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
4241ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
4342ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
44 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  m  e.  ZZ )
452ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  NN )
4645nnzd 9568 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  ZZ )
4744, 46zaddcld 9573 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( m  +  K )  e.  ZZ )
4840, 43, 47rspcdva 2912 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) )
4928, 37, 48mpjaodan 803 . . . . 5  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
5049ex 115 . . . 4  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2648 . . 3  |-  ( ph  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) ) )
5251imp 124 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
53 breq1 4086 . . . 4  |-  ( m  =  j  ->  (
m  <_  A  <->  j  <_  A ) )
54 oveq1 6008 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 4095 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 473 . . 3  |-  ( m  =  j  ->  (
( m  <_  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2766 . 2  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
5852, 57sylibr 134 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   NNcn 9110   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  exbtwnzlemshrink  10468
  Copyright terms: Public domain W3C validator