ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep Unicode version

Theorem exbtwnzlemstep 10183
Description: Lemma for exbtwnzlemex 10185. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k  |-  ( ph  ->  K  e.  NN )
exbtwnzlemstep.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemstep.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemstep  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Distinct variable groups:    A, m, n   
m, K, n    ph, m, n

Proof of Theorem exbtwnzlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simpllr 524 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  ZZ )
2 exbtwnzlemstep.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
32ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  NN )
43nnzd 9312 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  ZZ )
51, 4zaddcld 9317 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  ZZ )
6 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  <_  A )
7 exbtwnzlemstep.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
87ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  e.  RR )
95zred 9313 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  RR )
10 1red 7914 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  RR )
119, 10readdcld 7928 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  e.  RR )
123nnred 8870 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  RR )
139, 12readdcld 7928 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  K )  e.  RR )
14 simplrr 526 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( m  +  ( K  +  1 ) ) )
151zcnd 9314 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  CC )
163nncnd 8871 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  CC )
17 1cnd 7915 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  CC )
1815, 16, 17addassd 7921 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  =  ( m  +  ( K  +  1
) ) )
1914, 18breqtrrd 4010 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  1 ) )
203nnge1d 8900 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  <_  K )
2110, 12, 9, 20leadd2dd 8458 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  <_  ( ( m  +  K )  +  K ) )
228, 11, 13, 19, 21ltletrd 8321 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  K
) )
23 breq1 3985 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  (
j  <_  A  <->  ( m  +  K )  <_  A
) )
24 oveq1 5849 . . . . . . . . . 10  |-  ( j  =  ( m  +  K )  ->  (
j  +  K )  =  ( ( m  +  K )  +  K ) )
2524breq2d 3994 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  K
)  +  K ) ) )
2623, 25anbi12d 465 . . . . . . . 8  |-  ( j  =  ( m  +  K )  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) ) )
2726rspcev 2830 . . . . . . 7  |-  ( ( ( m  +  K
)  e.  ZZ  /\  ( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
285, 6, 22, 27syl12anc 1226 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
29 simpllr 524 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  e.  ZZ )
30 simplrl 525 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  <_  A )
31 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  A  <  ( m  +  K
) )
32 breq1 3985 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <_  A  <->  m  <_  A ) )
33 oveq1 5849 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
3433breq2d 3994 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
3532, 34anbi12d 465 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  K ) ) ) )
3635rspcev 2830 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <_  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
3729, 30, 31, 36syl12anc 1226 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
38 breq1 3985 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  (
n  <_  A  <->  ( m  +  K )  <_  A
) )
39 breq2 3986 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  ( A  <  n  <->  A  <  ( m  +  K ) ) )
4038, 39orbi12d 783 . . . . . . 7  |-  ( n  =  ( m  +  K )  ->  (
( n  <_  A  \/  A  <  n )  <-> 
( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) ) )
41 exbtwnzlemstep.tri . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
4241ralrimiva 2539 . . . . . . . 8  |-  ( ph  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
4342ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
44 simplr 520 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  m  e.  ZZ )
452ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  NN )
4645nnzd 9312 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  ZZ )
4744, 46zaddcld 9317 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( m  +  K )  e.  ZZ )
4840, 43, 47rspcdva 2835 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) )
4928, 37, 48mpjaodan 788 . . . . 5  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
5049ex 114 . . . 4  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2583 . . 3  |-  ( ph  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) ) )
5251imp 123 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
53 breq1 3985 . . . 4  |-  ( m  =  j  ->  (
m  <_  A  <->  j  <_  A ) )
54 oveq1 5849 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 3994 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 465 . . 3  |-  ( m  =  j  ->  (
( m  <_  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2693 . 2  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
5852, 57sylibr 133 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   RRcr 7752   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934   NNcn 8857   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  exbtwnzlemshrink  10184
  Copyright terms: Public domain W3C validator