| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rebtwn2zlemstep | Unicode version | ||
| Description: Lemma for rebtwn2z 10434. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| Ref | Expression |
|---|---|
| rebtwn2zlemstep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z 9443 |
. . . . . . . 8
| |
| 2 | 1 | ad3antlr 493 |
. . . . . . 7
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | simplrr 536 |
. . . . . . . 8
| |
| 5 | simpllr 534 |
. . . . . . . . . . 11
| |
| 6 | 5 | zcnd 9531 |
. . . . . . . . . 10
|
| 7 | 1cnd 8123 |
. . . . . . . . . 10
| |
| 8 | eluzelcn 9694 |
. . . . . . . . . . 11
| |
| 9 | 8 | ad4antr 494 |
. . . . . . . . . 10
|
| 10 | 6, 7, 9 | addassd 8130 |
. . . . . . . . 9
|
| 11 | 7, 9 | addcomd 8258 |
. . . . . . . . . 10
|
| 12 | 11 | oveq2d 5983 |
. . . . . . . . 9
|
| 13 | 10, 12 | eqtrd 2240 |
. . . . . . . 8
|
| 14 | 4, 13 | breqtrrd 4087 |
. . . . . . 7
|
| 15 | breq1 4062 |
. . . . . . . . 9
| |
| 16 | oveq1 5974 |
. . . . . . . . . 10
| |
| 17 | 16 | breq2d 4071 |
. . . . . . . . 9
|
| 18 | 15, 17 | anbi12d 473 |
. . . . . . . 8
|
| 19 | 18 | rspcev 2884 |
. . . . . . 7
|
| 20 | 2, 3, 14, 19 | syl12anc 1248 |
. . . . . 6
|
| 21 | simpllr 534 |
. . . . . . 7
| |
| 22 | simplrl 535 |
. . . . . . 7
| |
| 23 | simpr 110 |
. . . . . . 7
| |
| 24 | breq1 4062 |
. . . . . . . . 9
| |
| 25 | oveq1 5974 |
. . . . . . . . . 10
| |
| 26 | 25 | breq2d 4071 |
. . . . . . . . 9
|
| 27 | 24, 26 | anbi12d 473 |
. . . . . . . 8
|
| 28 | 27 | rspcev 2884 |
. . . . . . 7
|
| 29 | 21, 22, 23, 28 | syl12anc 1248 |
. . . . . 6
|
| 30 | 1red 8122 |
. . . . . . . 8
| |
| 31 | eluzelre 9693 |
. . . . . . . . 9
| |
| 32 | 31 | ad3antrrr 492 |
. . . . . . . 8
|
| 33 | simplr 528 |
. . . . . . . . 9
| |
| 34 | 33 | zred 9530 |
. . . . . . . 8
|
| 35 | 1z 9433 |
. . . . . . . . . . 11
| |
| 36 | eluzp1l 9708 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | mpan 424 |
. . . . . . . . . 10
|
| 38 | df-2 9130 |
. . . . . . . . . . 11
| |
| 39 | 38 | fveq2i 5602 |
. . . . . . . . . 10
|
| 40 | 37, 39 | eleq2s 2302 |
. . . . . . . . 9
|
| 41 | 40 | ad3antrrr 492 |
. . . . . . . 8
|
| 42 | 30, 32, 34, 41 | ltadd2dd 8530 |
. . . . . . 7
|
| 43 | 34, 30 | readdcld 8137 |
. . . . . . . 8
|
| 44 | 34, 32 | readdcld 8137 |
. . . . . . . 8
|
| 45 | simpllr 534 |
. . . . . . . 8
| |
| 46 | axltwlin 8175 |
. . . . . . . 8
| |
| 47 | 43, 44, 45, 46 | syl3anc 1250 |
. . . . . . 7
|
| 48 | 42, 47 | mpd 13 |
. . . . . 6
|
| 49 | 20, 29, 48 | mpjaodan 800 |
. . . . 5
|
| 50 | 49 | ex 115 |
. . . 4
|
| 51 | 50 | rexlimdva 2625 |
. . 3
|
| 52 | 51 | 3impia 1203 |
. 2
|
| 53 | breq1 4062 |
. . . 4
| |
| 54 | oveq1 5974 |
. . . . 5
| |
| 55 | 54 | breq2d 4071 |
. . . 4
|
| 56 | 53, 55 | anbi12d 473 |
. . 3
|
| 57 | 56 | cbvrexv 2743 |
. 2
|
| 58 | 52, 57 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: rebtwn2zlemshrink 10433 |
| Copyright terms: Public domain | W3C validator |