ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep Unicode version

Theorem rebtwn2zlemstep 10209
Description: Lemma for rebtwn2z 10211. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Distinct variable groups:    A, m    m, K

Proof of Theorem rebtwn2zlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 peano2z 9248 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  ZZ )
21ad3antlr 490 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  e.  ZZ )
3 simpr 109 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  < 
A )
4 simplrr 531 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( m  +  ( K  +  1 ) ) )
5 simpllr 529 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  ZZ )
65zcnd 9335 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  CC )
7 1cnd 7936 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  1  e.  CC )
8 eluzelcn 9498 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  CC )
98ad4antr 491 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  K  e.  CC )
106, 7, 9addassd 7942 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( 1  +  K ) ) )
117, 9addcomd 8070 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( 1  +  K )  =  ( K  +  1 ) )
1211oveq2d 5869 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  ( 1  +  K ) )  =  ( m  +  ( K  +  1 ) ) )
1310, 12eqtrd 2203 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( K  +  1 ) ) )
144, 13breqtrrd 4017 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( ( m  +  1 )  +  K ) )
15 breq1 3992 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  (
j  <  A  <->  ( m  +  1 )  < 
A ) )
16 oveq1 5860 . . . . . . . . . 10  |-  ( j  =  ( m  + 
1 )  ->  (
j  +  K )  =  ( ( m  +  1 )  +  K ) )
1716breq2d 4001 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  1 )  +  K ) ) )
1815, 17anbi12d 470 . . . . . . . 8  |-  ( j  =  ( m  + 
1 )  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) ) )
1918rspcev 2834 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  ZZ  /\  ( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
202, 3, 14, 19syl12anc 1231 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
21 simpllr 529 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  e.  ZZ )
22 simplrl 530 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  <  A )
23 simpr 109 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  A  <  ( m  +  K ) )
24 breq1 3992 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <  A  <->  m  <  A ) )
25 oveq1 5860 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
2625breq2d 4001 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
2724, 26anbi12d 470 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <  A  /\  A  <  ( m  +  K ) ) ) )
2827rspcev 2834 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) )
2921, 22, 23, 28syl12anc 1231 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
30 1red 7935 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  e.  RR )
31 eluzelre 9497 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  RR )
3231ad3antrrr 489 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  K  e.  RR )
33 simplr 525 . . . . . . . . 9  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  ZZ )
3433zred 9334 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  RR )
35 1z 9238 . . . . . . . . . . 11  |-  1  e.  ZZ
36 eluzp1l 9511 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  K  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  <  K )
3735, 36mpan 422 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  (
1  +  1 ) )  ->  1  <  K )
38 df-2 8937 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3938fveq2i 5499 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
4037, 39eleq2s 2265 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  1  <  K )
4140ad3antrrr 489 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  <  K )
4230, 32, 34, 41ltadd2dd 8341 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  <  ( m  +  K ) )
4334, 30readdcld 7949 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  e.  RR )
4434, 32readdcld 7949 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  K )  e.  RR )
45 simpllr 529 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  A  e.  RR )
46 axltwlin 7987 . . . . . . . 8  |-  ( ( ( m  +  1 )  e.  RR  /\  ( m  +  K
)  e.  RR  /\  A  e.  RR )  ->  ( ( m  + 
1 )  <  (
m  +  K )  ->  ( ( m  +  1 )  < 
A  \/  A  < 
( m  +  K
) ) ) )
4743, 44, 45, 46syl3anc 1233 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  ( m  +  K )  -> 
( ( m  + 
1 )  <  A  \/  A  <  ( m  +  K ) ) ) )
4842, 47mpd 13 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  A  \/  A  <  ( m  +  K ) ) )
4920, 29, 48mpjaodan 793 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5049ex 114 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  ->  ( ( m  <  A  /\  A  <  ( m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2587 . . 3  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) ) )
52513impia 1195 . 2  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
53 breq1 3992 . . . 4  |-  ( m  =  j  ->  (
m  <  A  <->  j  <  A ) )
54 oveq1 5860 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 4001 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 470 . . 3  |-  ( m  =  j  ->  (
( m  <  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2697 . 2  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5852, 57sylibr 133 1  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   1c1 7775    + caddc 7777    < clt 7954   2c2 8929   ZZcz 9212   ZZ>=cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  rebtwn2zlemshrink  10210
  Copyright terms: Public domain W3C validator