ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep Unicode version

Theorem rebtwn2zlemstep 10395
Description: Lemma for rebtwn2z 10397. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Distinct variable groups:    A, m    m, K

Proof of Theorem rebtwn2zlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 peano2z 9408 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  ZZ )
21ad3antlr 493 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  e.  ZZ )
3 simpr 110 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  < 
A )
4 simplrr 536 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( m  +  ( K  +  1 ) ) )
5 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  ZZ )
65zcnd 9496 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  CC )
7 1cnd 8088 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  1  e.  CC )
8 eluzelcn 9659 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  CC )
98ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  K  e.  CC )
106, 7, 9addassd 8095 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( 1  +  K ) ) )
117, 9addcomd 8223 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( 1  +  K )  =  ( K  +  1 ) )
1211oveq2d 5960 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  ( 1  +  K ) )  =  ( m  +  ( K  +  1 ) ) )
1310, 12eqtrd 2238 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( K  +  1 ) ) )
144, 13breqtrrd 4072 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( ( m  +  1 )  +  K ) )
15 breq1 4047 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  (
j  <  A  <->  ( m  +  1 )  < 
A ) )
16 oveq1 5951 . . . . . . . . . 10  |-  ( j  =  ( m  + 
1 )  ->  (
j  +  K )  =  ( ( m  +  1 )  +  K ) )
1716breq2d 4056 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  1 )  +  K ) ) )
1815, 17anbi12d 473 . . . . . . . 8  |-  ( j  =  ( m  + 
1 )  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) ) )
1918rspcev 2877 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  ZZ  /\  ( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
202, 3, 14, 19syl12anc 1248 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
21 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  e.  ZZ )
22 simplrl 535 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  <  A )
23 simpr 110 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  A  <  ( m  +  K ) )
24 breq1 4047 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <  A  <->  m  <  A ) )
25 oveq1 5951 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
2625breq2d 4056 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
2724, 26anbi12d 473 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <  A  /\  A  <  ( m  +  K ) ) ) )
2827rspcev 2877 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) )
2921, 22, 23, 28syl12anc 1248 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
30 1red 8087 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  e.  RR )
31 eluzelre 9658 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  RR )
3231ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  K  e.  RR )
33 simplr 528 . . . . . . . . 9  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  ZZ )
3433zred 9495 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  RR )
35 1z 9398 . . . . . . . . . . 11  |-  1  e.  ZZ
36 eluzp1l 9673 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  K  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  <  K )
3735, 36mpan 424 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  (
1  +  1 ) )  ->  1  <  K )
38 df-2 9095 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3938fveq2i 5579 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
4037, 39eleq2s 2300 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  1  <  K )
4140ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  <  K )
4230, 32, 34, 41ltadd2dd 8495 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  <  ( m  +  K ) )
4334, 30readdcld 8102 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  e.  RR )
4434, 32readdcld 8102 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  K )  e.  RR )
45 simpllr 534 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  A  e.  RR )
46 axltwlin 8140 . . . . . . . 8  |-  ( ( ( m  +  1 )  e.  RR  /\  ( m  +  K
)  e.  RR  /\  A  e.  RR )  ->  ( ( m  + 
1 )  <  (
m  +  K )  ->  ( ( m  +  1 )  < 
A  \/  A  < 
( m  +  K
) ) ) )
4743, 44, 45, 46syl3anc 1250 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  ( m  +  K )  -> 
( ( m  + 
1 )  <  A  \/  A  <  ( m  +  K ) ) ) )
4842, 47mpd 13 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  A  \/  A  <  ( m  +  K ) ) )
4920, 29, 48mpjaodan 800 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5049ex 115 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  ->  ( ( m  <  A  /\  A  <  ( m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2623 . . 3  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) ) )
52513impia 1203 . 2  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
53 breq1 4047 . . . 4  |-  ( m  =  j  ->  (
m  <  A  <->  j  <  A ) )
54 oveq1 5951 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 4056 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 473 . . 3  |-  ( m  =  j  ->  (
( m  <  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2739 . 2  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5852, 57sylibr 134 1  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   1c1 7926    + caddc 7928    < clt 8107   2c2 9087   ZZcz 9372   ZZ>=cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649
This theorem is referenced by:  rebtwn2zlemshrink  10396
  Copyright terms: Public domain W3C validator