ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep Unicode version

Theorem rebtwn2zlemstep 10342
Description: Lemma for rebtwn2z 10344. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Distinct variable groups:    A, m    m, K

Proof of Theorem rebtwn2zlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 peano2z 9362 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  ZZ )
21ad3antlr 493 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  e.  ZZ )
3 simpr 110 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  < 
A )
4 simplrr 536 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( m  +  ( K  +  1 ) ) )
5 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  ZZ )
65zcnd 9449 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  CC )
7 1cnd 8042 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  1  e.  CC )
8 eluzelcn 9612 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  CC )
98ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  K  e.  CC )
106, 7, 9addassd 8049 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( 1  +  K ) ) )
117, 9addcomd 8177 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( 1  +  K )  =  ( K  +  1 ) )
1211oveq2d 5938 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  ( 1  +  K ) )  =  ( m  +  ( K  +  1 ) ) )
1310, 12eqtrd 2229 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( K  +  1 ) ) )
144, 13breqtrrd 4061 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( ( m  +  1 )  +  K ) )
15 breq1 4036 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  (
j  <  A  <->  ( m  +  1 )  < 
A ) )
16 oveq1 5929 . . . . . . . . . 10  |-  ( j  =  ( m  + 
1 )  ->  (
j  +  K )  =  ( ( m  +  1 )  +  K ) )
1716breq2d 4045 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  1 )  +  K ) ) )
1815, 17anbi12d 473 . . . . . . . 8  |-  ( j  =  ( m  + 
1 )  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) ) )
1918rspcev 2868 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  ZZ  /\  ( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
202, 3, 14, 19syl12anc 1247 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
21 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  e.  ZZ )
22 simplrl 535 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  <  A )
23 simpr 110 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  A  <  ( m  +  K ) )
24 breq1 4036 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <  A  <->  m  <  A ) )
25 oveq1 5929 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
2625breq2d 4045 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
2724, 26anbi12d 473 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <  A  /\  A  <  ( m  +  K ) ) ) )
2827rspcev 2868 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) )
2921, 22, 23, 28syl12anc 1247 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
30 1red 8041 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  e.  RR )
31 eluzelre 9611 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  RR )
3231ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  K  e.  RR )
33 simplr 528 . . . . . . . . 9  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  ZZ )
3433zred 9448 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  RR )
35 1z 9352 . . . . . . . . . . 11  |-  1  e.  ZZ
36 eluzp1l 9626 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  K  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  <  K )
3735, 36mpan 424 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  (
1  +  1 ) )  ->  1  <  K )
38 df-2 9049 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3938fveq2i 5561 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
4037, 39eleq2s 2291 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  1  <  K )
4140ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  <  K )
4230, 32, 34, 41ltadd2dd 8449 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  <  ( m  +  K ) )
4334, 30readdcld 8056 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  e.  RR )
4434, 32readdcld 8056 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  K )  e.  RR )
45 simpllr 534 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  A  e.  RR )
46 axltwlin 8094 . . . . . . . 8  |-  ( ( ( m  +  1 )  e.  RR  /\  ( m  +  K
)  e.  RR  /\  A  e.  RR )  ->  ( ( m  + 
1 )  <  (
m  +  K )  ->  ( ( m  +  1 )  < 
A  \/  A  < 
( m  +  K
) ) ) )
4743, 44, 45, 46syl3anc 1249 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  ( m  +  K )  -> 
( ( m  + 
1 )  <  A  \/  A  <  ( m  +  K ) ) ) )
4842, 47mpd 13 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  A  \/  A  <  ( m  +  K ) ) )
4920, 29, 48mpjaodan 799 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5049ex 115 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  ->  ( ( m  <  A  /\  A  <  ( m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2614 . . 3  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) ) )
52513impia 1202 . 2  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
53 breq1 4036 . . . 4  |-  ( m  =  j  ->  (
m  <  A  <->  j  <  A ) )
54 oveq1 5929 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 4045 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 473 . . 3  |-  ( m  =  j  ->  (
( m  <  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2730 . 2  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5852, 57sylibr 134 1  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   1c1 7880    + caddc 7882    < clt 8061   2c2 9041   ZZcz 9326   ZZ>=cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602
This theorem is referenced by:  rebtwn2zlemshrink  10343
  Copyright terms: Public domain W3C validator