ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep Unicode version

Theorem rebtwn2zlemstep 10188
Description: Lemma for rebtwn2z 10190. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Distinct variable groups:    A, m    m, K

Proof of Theorem rebtwn2zlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 peano2z 9227 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  ZZ )
21ad3antlr 485 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  e.  ZZ )
3 simpr 109 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  < 
A )
4 simplrr 526 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( m  +  ( K  +  1 ) ) )
5 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  ZZ )
65zcnd 9314 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  CC )
7 1cnd 7915 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  1  e.  CC )
8 eluzelcn 9477 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  CC )
98ad4antr 486 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  K  e.  CC )
106, 7, 9addassd 7921 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( 1  +  K ) ) )
117, 9addcomd 8049 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( 1  +  K )  =  ( K  +  1 ) )
1211oveq2d 5858 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  ( 1  +  K ) )  =  ( m  +  ( K  +  1 ) ) )
1310, 12eqtrd 2198 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( K  +  1 ) ) )
144, 13breqtrrd 4010 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( ( m  +  1 )  +  K ) )
15 breq1 3985 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  (
j  <  A  <->  ( m  +  1 )  < 
A ) )
16 oveq1 5849 . . . . . . . . . 10  |-  ( j  =  ( m  + 
1 )  ->  (
j  +  K )  =  ( ( m  +  1 )  +  K ) )
1716breq2d 3994 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  1 )  +  K ) ) )
1815, 17anbi12d 465 . . . . . . . 8  |-  ( j  =  ( m  + 
1 )  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) ) )
1918rspcev 2830 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  ZZ  /\  ( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
202, 3, 14, 19syl12anc 1226 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
21 simpllr 524 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  e.  ZZ )
22 simplrl 525 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  <  A )
23 simpr 109 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  A  <  ( m  +  K ) )
24 breq1 3985 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <  A  <->  m  <  A ) )
25 oveq1 5849 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
2625breq2d 3994 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
2724, 26anbi12d 465 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <  A  /\  A  <  ( m  +  K ) ) ) )
2827rspcev 2830 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) )
2921, 22, 23, 28syl12anc 1226 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
30 1red 7914 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  e.  RR )
31 eluzelre 9476 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  RR )
3231ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  K  e.  RR )
33 simplr 520 . . . . . . . . 9  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  ZZ )
3433zred 9313 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  RR )
35 1z 9217 . . . . . . . . . . 11  |-  1  e.  ZZ
36 eluzp1l 9490 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  K  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  <  K )
3735, 36mpan 421 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  (
1  +  1 ) )  ->  1  <  K )
38 df-2 8916 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3938fveq2i 5489 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
4037, 39eleq2s 2261 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  1  <  K )
4140ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  <  K )
4230, 32, 34, 41ltadd2dd 8320 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  <  ( m  +  K ) )
4334, 30readdcld 7928 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  e.  RR )
4434, 32readdcld 7928 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  K )  e.  RR )
45 simpllr 524 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  A  e.  RR )
46 axltwlin 7966 . . . . . . . 8  |-  ( ( ( m  +  1 )  e.  RR  /\  ( m  +  K
)  e.  RR  /\  A  e.  RR )  ->  ( ( m  + 
1 )  <  (
m  +  K )  ->  ( ( m  +  1 )  < 
A  \/  A  < 
( m  +  K
) ) ) )
4743, 44, 45, 46syl3anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  ( m  +  K )  -> 
( ( m  + 
1 )  <  A  \/  A  <  ( m  +  K ) ) ) )
4842, 47mpd 13 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  A  \/  A  <  ( m  +  K ) ) )
4920, 29, 48mpjaodan 788 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5049ex 114 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  ->  ( ( m  <  A  /\  A  <  ( m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2583 . . 3  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) ) )
52513impia 1190 . 2  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
53 breq1 3985 . . . 4  |-  ( m  =  j  ->  (
m  <  A  <->  j  <  A ) )
54 oveq1 5849 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 3994 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 465 . . 3  |-  ( m  =  j  ->  (
( m  <  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2693 . 2  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5852, 57sylibr 133 1  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   1c1 7754    + caddc 7756    < clt 7933   2c2 8908   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  rebtwn2zlemshrink  10189
  Copyright terms: Public domain W3C validator