ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flhalf Unicode version

Theorem flhalf 10183
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf  |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) ) )

Proof of Theorem flhalf
StepHypRef Expression
1 peano2z 9186 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
2 2nn 8977 . . . . . . 7  |-  2  e.  NN
3 znq 9515 . . . . . . 7  |-  ( ( ( N  +  1 )  e.  ZZ  /\  2  e.  NN )  ->  ( ( N  + 
1 )  /  2
)  e.  QQ )
41, 2, 3sylancl 410 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  /  2 )  e.  QQ )
5 flqltp1 10160 . . . . . 6  |-  ( ( ( N  +  1 )  /  2 )  e.  QQ  ->  (
( N  +  1 )  /  2 )  <  ( ( |_
`  ( ( N  +  1 )  / 
2 ) )  +  1 ) )
64, 5syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  /  2 )  <  ( ( |_
`  ( ( N  +  1 )  / 
2 ) )  +  1 ) )
7 zre 9154 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
8 peano2re 7994 . . . . . . 7  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
97, 8syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  RR )
104flqcld 10158 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  ZZ )
1110zred 9269 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  RR )
12 1red 7876 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  RR )
1311, 12readdcld 7890 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( |_ `  (
( N  +  1 )  /  2 ) )  +  1 )  e.  RR )
14 2rp 9547 . . . . . . 7  |-  2  e.  RR+
1514a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  RR+ )
169, 13, 15ltdivmuld 9637 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  <  ( ( |_ `  ( ( N  +  1 )  / 
2 ) )  +  1 )  <->  ( N  +  1 )  < 
( 2  x.  (
( |_ `  (
( N  +  1 )  /  2 ) )  +  1 ) ) ) )
176, 16mpbid 146 . . . 4  |-  ( N  e.  ZZ  ->  ( N  +  1 )  <  ( 2  x.  ( ( |_ `  ( ( N  + 
1 )  /  2
) )  +  1 ) ) )
1812recnd 7889 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
19182timesd 9058 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  x.  1 )  =  ( 1  +  1 ) )
2019oveq2d 5834 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  ( 1  +  1 ) ) )
21 2cnd 8889 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
2211recnd 7889 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  CC )
2321, 22, 18adddid 7885 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( |_ `  ( ( N  +  1 )  /  2 ) )  +  1 ) )  =  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  ( 2  x.  1 ) ) )
24 2re 8886 . . . . . . . . 9  |-  2  e.  RR
2524a1i 9 . . . . . . . 8  |-  ( N  e.  ZZ  ->  2  e.  RR )
2625, 11remulcld 7891 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  RR )
2726recnd 7889 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  CC )
2827, 18, 18addassd 7883 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  1 )  +  1 )  =  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  ( 1  +  1 ) ) )
2920, 23, 283eqtr4d 2200 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( |_ `  ( ( N  +  1 )  /  2 ) )  +  1 ) )  =  ( ( ( 2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  +  1 ) )
3017, 29breqtrd 3990 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  1 )  <  ( ( ( 2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  +  1 ) )
3126, 12readdcld 7890 . . . 4  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  e.  RR )
327, 31, 12ltadd1d 8396 . . 3  |-  ( N  e.  ZZ  ->  ( N  <  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  1 )  <->  ( N  +  1 )  < 
( ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  1 )  +  1 ) ) )
3330, 32mpbird 166 . 2  |-  ( N  e.  ZZ  ->  N  <  ( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  1 ) )
34 2z 9178 . . . . 5  |-  2  e.  ZZ
3534a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3635, 10zmulcld 9275 . . 3  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  ZZ )
37 zleltp1 9205 . . 3  |-  ( ( N  e.  ZZ  /\  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  e.  ZZ )  -> 
( N  <_  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  <-> 
N  <  ( (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 ) ) )
3836, 37mpdan 418 . 2  |-  ( N  e.  ZZ  ->  ( N  <_  ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  <->  N  <  ( ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  1 ) ) )
3933, 38mpbird 166 1  |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2128   class class class wbr 3965   ` cfv 5167  (class class class)co 5818   RRcr 7714   1c1 7716    + caddc 7718    x. cmul 7720    < clt 7895    <_ cle 7896    / cdiv 8528   NNcn 8816   2c2 8867   ZZcz 9150   QQcq 9510   RR+crp 9542   |_cfl 10149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-po 4255  df-iso 4256  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-n0 9074  df-z 9151  df-q 9511  df-rp 9543  df-fl 10151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator