ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flhalf Unicode version

Theorem flhalf 10482
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf  |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) ) )

Proof of Theorem flhalf
StepHypRef Expression
1 peano2z 9443 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
2 2nn 9233 . . . . . . 7  |-  2  e.  NN
3 znq 9780 . . . . . . 7  |-  ( ( ( N  +  1 )  e.  ZZ  /\  2  e.  NN )  ->  ( ( N  + 
1 )  /  2
)  e.  QQ )
41, 2, 3sylancl 413 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  /  2 )  e.  QQ )
5 flqltp1 10459 . . . . . 6  |-  ( ( ( N  +  1 )  /  2 )  e.  QQ  ->  (
( N  +  1 )  /  2 )  <  ( ( |_
`  ( ( N  +  1 )  / 
2 ) )  +  1 ) )
64, 5syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  /  2 )  <  ( ( |_
`  ( ( N  +  1 )  / 
2 ) )  +  1 ) )
7 zre 9411 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
8 peano2re 8243 . . . . . . 7  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
97, 8syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  RR )
104flqcld 10457 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  ZZ )
1110zred 9530 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  RR )
12 1red 8122 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  RR )
1311, 12readdcld 8137 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( |_ `  (
( N  +  1 )  /  2 ) )  +  1 )  e.  RR )
14 2rp 9815 . . . . . . 7  |-  2  e.  RR+
1514a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  RR+ )
169, 13, 15ltdivmuld 9905 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  <  ( ( |_ `  ( ( N  +  1 )  / 
2 ) )  +  1 )  <->  ( N  +  1 )  < 
( 2  x.  (
( |_ `  (
( N  +  1 )  /  2 ) )  +  1 ) ) ) )
176, 16mpbid 147 . . . 4  |-  ( N  e.  ZZ  ->  ( N  +  1 )  <  ( 2  x.  ( ( |_ `  ( ( N  + 
1 )  /  2
) )  +  1 ) ) )
1812recnd 8136 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
19182timesd 9315 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  x.  1 )  =  ( 1  +  1 ) )
2019oveq2d 5983 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  ( 1  +  1 ) ) )
21 2cnd 9144 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
2211recnd 8136 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  CC )
2321, 22, 18adddid 8132 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( |_ `  ( ( N  +  1 )  /  2 ) )  +  1 ) )  =  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  ( 2  x.  1 ) ) )
24 2re 9141 . . . . . . . . 9  |-  2  e.  RR
2524a1i 9 . . . . . . . 8  |-  ( N  e.  ZZ  ->  2  e.  RR )
2625, 11remulcld 8138 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  RR )
2726recnd 8136 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  CC )
2827, 18, 18addassd 8130 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  1 )  +  1 )  =  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  ( 1  +  1 ) ) )
2920, 23, 283eqtr4d 2250 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( |_ `  ( ( N  +  1 )  /  2 ) )  +  1 ) )  =  ( ( ( 2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  +  1 ) )
3017, 29breqtrd 4085 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  1 )  <  ( ( ( 2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  +  1 ) )
3126, 12readdcld 8137 . . . 4  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  e.  RR )
327, 31, 12ltadd1d 8646 . . 3  |-  ( N  e.  ZZ  ->  ( N  <  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  1 )  <->  ( N  +  1 )  < 
( ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  1 )  +  1 ) ) )
3330, 32mpbird 167 . 2  |-  ( N  e.  ZZ  ->  N  <  ( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  1 ) )
34 2z 9435 . . . . 5  |-  2  e.  ZZ
3534a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3635, 10zmulcld 9536 . . 3  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  ZZ )
37 zleltp1 9463 . . 3  |-  ( ( N  e.  ZZ  /\  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  e.  ZZ )  -> 
( N  <_  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  <-> 
N  <  ( (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 ) ) )
3836, 37mpdan 421 . 2  |-  ( N  e.  ZZ  ->  ( N  <_  ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  <->  N  <  ( ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  1 ) ) )
3933, 38mpbird 167 1  |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    / cdiv 8780   NNcn 9071   2c2 9122   ZZcz 9407   QQcq 9775   RR+crp 9810   |_cfl 10448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-q 9776  df-rp 9811  df-fl 10450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator