Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqoddm1div8 | Unicode version |
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
sqoddm1div8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5860 | . . . . . 6 | |
2 | 2z 9240 | . . . . . . . . . 10 | |
3 | 2 | a1i 9 | . . . . . . . . 9 |
4 | id 19 | . . . . . . . . 9 | |
5 | 3, 4 | zmulcld 9340 | . . . . . . . 8 |
6 | 5 | zcnd 9335 | . . . . . . 7 |
7 | binom21 10588 | . . . . . . 7 | |
8 | 6, 7 | syl 14 | . . . . . 6 |
9 | 1, 8 | sylan9eqr 2225 | . . . . 5 |
10 | 9 | oveq1d 5868 | . . . 4 |
11 | 2cnd 8951 | . . . . . . . . . . 11 | |
12 | zcn 9217 | . . . . . . . . . . 11 | |
13 | 11, 12 | sqmuld 10621 | . . . . . . . . . 10 |
14 | sq2 10571 | . . . . . . . . . . . 12 | |
15 | 14 | a1i 9 | . . . . . . . . . . 11 |
16 | 15 | oveq1d 5868 | . . . . . . . . . 10 |
17 | 13, 16 | eqtrd 2203 | . . . . . . . . 9 |
18 | mulass 7905 | . . . . . . . . . . . 12 | |
19 | 18 | eqcomd 2176 | . . . . . . . . . . 11 |
20 | 11, 11, 12, 19 | syl3anc 1233 | . . . . . . . . . 10 |
21 | 2t2e4 9032 | . . . . . . . . . . . 12 | |
22 | 21 | a1i 9 | . . . . . . . . . . 11 |
23 | 22 | oveq1d 5868 | . . . . . . . . . 10 |
24 | 20, 23 | eqtrd 2203 | . . . . . . . . 9 |
25 | 17, 24 | oveq12d 5871 | . . . . . . . 8 |
26 | 25 | oveq1d 5868 | . . . . . . 7 |
27 | 26 | oveq1d 5868 | . . . . . 6 |
28 | 4z 9242 | . . . . . . . . . . 11 | |
29 | 28 | a1i 9 | . . . . . . . . . 10 |
30 | zsqcl 10546 | . . . . . . . . . 10 | |
31 | 29, 30 | zmulcld 9340 | . . . . . . . . 9 |
32 | 31 | zcnd 9335 | . . . . . . . 8 |
33 | 29, 4 | zmulcld 9340 | . . . . . . . . 9 |
34 | 33 | zcnd 9335 | . . . . . . . 8 |
35 | 32, 34 | addcld 7939 | . . . . . . 7 |
36 | pncan1 8296 | . . . . . . 7 | |
37 | 35, 36 | syl 14 | . . . . . 6 |
38 | 27, 37 | eqtrd 2203 | . . . . 5 |
39 | 38 | adantr 274 | . . . 4 |
40 | 10, 39 | eqtrd 2203 | . . 3 |
41 | 40 | oveq1d 5868 | . 2 |
42 | 4cn 8956 | . . . . . . 7 | |
43 | 42 | a1i 9 | . . . . . 6 |
44 | 30 | zcnd 9335 | . . . . . 6 |
45 | 43, 44, 12 | adddid 7944 | . . . . 5 |
46 | 45 | eqcomd 2176 | . . . 4 |
47 | 46 | oveq1d 5868 | . . 3 |
48 | 47 | adantr 274 | . 2 |
49 | 4t2e8 9036 | . . . . . . 7 | |
50 | 49 | a1i 9 | . . . . . 6 |
51 | 50 | eqcomd 2176 | . . . . 5 |
52 | 51 | oveq2d 5869 | . . . 4 |
53 | 30, 4 | zaddcld 9338 | . . . . . 6 |
54 | 53 | zcnd 9335 | . . . . 5 |
55 | 2ap0 8971 | . . . . . 6 # | |
56 | 55 | a1i 9 | . . . . 5 # |
57 | 4ap0 8977 | . . . . . 6 # | |
58 | 57 | a1i 9 | . . . . 5 # |
59 | 54, 11, 43, 56, 58 | divcanap5d 8734 | . . . 4 |
60 | 12 | sqvald 10606 | . . . . . . 7 |
61 | 60 | oveq1d 5868 | . . . . . 6 |
62 | 12 | mulid1d 7937 | . . . . . . . 8 |
63 | 62 | eqcomd 2176 | . . . . . . 7 |
64 | 63 | oveq2d 5869 | . . . . . 6 |
65 | 1cnd 7936 | . . . . . . 7 | |
66 | adddi 7906 | . . . . . . . 8 | |
67 | 66 | eqcomd 2176 | . . . . . . 7 |
68 | 12, 12, 65, 67 | syl3anc 1233 | . . . . . 6 |
69 | 61, 64, 68 | 3eqtrd 2207 | . . . . 5 |
70 | 69 | oveq1d 5868 | . . . 4 |
71 | 52, 59, 70 | 3eqtrd 2207 | . . 3 |
72 | 71 | adantr 274 | . 2 |
73 | 41, 48, 72 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 cmin 8090 # cap 8500 cdiv 8589 c2 8929 c4 8931 c8 8935 cz 9212 cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: sqoddm1div8z 11845 |
Copyright terms: Public domain | W3C validator |