| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqoddm1div8 | Unicode version | ||
| Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| sqoddm1div8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 |
. . . . . 6
| |
| 2 | 2z 9354 |
. . . . . . . . . 10
| |
| 3 | 2 | a1i 9 |
. . . . . . . . 9
|
| 4 | id 19 |
. . . . . . . . 9
| |
| 5 | 3, 4 | zmulcld 9454 |
. . . . . . . 8
|
| 6 | 5 | zcnd 9449 |
. . . . . . 7
|
| 7 | binom21 10744 |
. . . . . . 7
| |
| 8 | 6, 7 | syl 14 |
. . . . . 6
|
| 9 | 1, 8 | sylan9eqr 2251 |
. . . . 5
|
| 10 | 9 | oveq1d 5937 |
. . . 4
|
| 11 | 2cnd 9063 |
. . . . . . . . . . 11
| |
| 12 | zcn 9331 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | sqmuld 10777 |
. . . . . . . . . 10
|
| 14 | sq2 10727 |
. . . . . . . . . . . 12
| |
| 15 | 14 | a1i 9 |
. . . . . . . . . . 11
|
| 16 | 15 | oveq1d 5937 |
. . . . . . . . . 10
|
| 17 | 13, 16 | eqtrd 2229 |
. . . . . . . . 9
|
| 18 | mulass 8010 |
. . . . . . . . . . . 12
| |
| 19 | 18 | eqcomd 2202 |
. . . . . . . . . . 11
|
| 20 | 11, 11, 12, 19 | syl3anc 1249 |
. . . . . . . . . 10
|
| 21 | 2t2e4 9145 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 22 | oveq1d 5937 |
. . . . . . . . . 10
|
| 24 | 20, 23 | eqtrd 2229 |
. . . . . . . . 9
|
| 25 | 17, 24 | oveq12d 5940 |
. . . . . . . 8
|
| 26 | 25 | oveq1d 5937 |
. . . . . . 7
|
| 27 | 26 | oveq1d 5937 |
. . . . . 6
|
| 28 | 4z 9356 |
. . . . . . . . . . 11
| |
| 29 | 28 | a1i 9 |
. . . . . . . . . 10
|
| 30 | zsqcl 10702 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | zmulcld 9454 |
. . . . . . . . 9
|
| 32 | 31 | zcnd 9449 |
. . . . . . . 8
|
| 33 | 29, 4 | zmulcld 9454 |
. . . . . . . . 9
|
| 34 | 33 | zcnd 9449 |
. . . . . . . 8
|
| 35 | 32, 34 | addcld 8046 |
. . . . . . 7
|
| 36 | pncan1 8403 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 14 |
. . . . . 6
|
| 38 | 27, 37 | eqtrd 2229 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | 10, 39 | eqtrd 2229 |
. . 3
|
| 41 | 40 | oveq1d 5937 |
. 2
|
| 42 | 4cn 9068 |
. . . . . . 7
| |
| 43 | 42 | a1i 9 |
. . . . . 6
|
| 44 | 30 | zcnd 9449 |
. . . . . 6
|
| 45 | 43, 44, 12 | adddid 8051 |
. . . . 5
|
| 46 | 45 | eqcomd 2202 |
. . . 4
|
| 47 | 46 | oveq1d 5937 |
. . 3
|
| 48 | 47 | adantr 276 |
. 2
|
| 49 | 4t2e8 9149 |
. . . . . . 7
| |
| 50 | 49 | a1i 9 |
. . . . . 6
|
| 51 | 50 | eqcomd 2202 |
. . . . 5
|
| 52 | 51 | oveq2d 5938 |
. . . 4
|
| 53 | 30, 4 | zaddcld 9452 |
. . . . . 6
|
| 54 | 53 | zcnd 9449 |
. . . . 5
|
| 55 | 2ap0 9083 |
. . . . . 6
| |
| 56 | 55 | a1i 9 |
. . . . 5
|
| 57 | 4ap0 9089 |
. . . . . 6
| |
| 58 | 57 | a1i 9 |
. . . . 5
|
| 59 | 54, 11, 43, 56, 58 | divcanap5d 8844 |
. . . 4
|
| 60 | 12 | sqvald 10762 |
. . . . . . 7
|
| 61 | 60 | oveq1d 5937 |
. . . . . 6
|
| 62 | 12 | mulridd 8043 |
. . . . . . . 8
|
| 63 | 62 | eqcomd 2202 |
. . . . . . 7
|
| 64 | 63 | oveq2d 5938 |
. . . . . 6
|
| 65 | 1cnd 8042 |
. . . . . . 7
| |
| 66 | adddi 8011 |
. . . . . . . 8
| |
| 67 | 66 | eqcomd 2202 |
. . . . . . 7
|
| 68 | 12, 12, 65, 67 | syl3anc 1249 |
. . . . . 6
|
| 69 | 61, 64, 68 | 3eqtrd 2233 |
. . . . 5
|
| 70 | 69 | oveq1d 5937 |
. . . 4
|
| 71 | 52, 59, 70 | 3eqtrd 2233 |
. . 3
|
| 72 | 71 | adantr 276 |
. 2
|
| 73 | 41, 48, 72 | 3eqtrd 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-exp 10631 |
| This theorem is referenced by: sqoddm1div8z 12051 |
| Copyright terms: Public domain | W3C validator |