ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8 Unicode version

Theorem sqoddm1div8 10629
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 5860 . . . . . 6  |-  ( M  =  ( ( 2  x.  N )  +  1 )  ->  ( M ^ 2 )  =  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
2 2z 9240 . . . . . . . . . 10  |-  2  e.  ZZ
32a1i 9 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
4 id 19 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
53, 4zmulcld 9340 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
65zcnd 9335 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
7 binom21 10588 . . . . . . 7  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
86, 7syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
91, 8sylan9eqr 2225 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( M ^
2 )  =  ( ( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
109oveq1d 5868 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 ) )
11 2cnd 8951 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  CC )
12 zcn 9217 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
1311, 12sqmuld 10621 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
14 sq2 10571 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
1514a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2 ^ 2 )  =  4 )
1615oveq1d 5868 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
1713, 16eqtrd 2203 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
18 mulass 7905 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
1918eqcomd 2176 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
2011, 11, 12, 19syl3anc 1233 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
21 2t2e4 9032 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
2221a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2  x.  2 )  =  4 )
2322oveq1d 5868 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
2420, 23eqtrd 2203 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( 4  x.  N ) )
2517, 24oveq12d 5871 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
2625oveq1d 5868 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 ) )
2726oveq1d 5868 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 ) )
28 4z 9242 . . . . . . . . . . 11  |-  4  e.  ZZ
2928a1i 9 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  4  e.  ZZ )
30 zsqcl 10546 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
3129, 30zmulcld 9340 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  ZZ )
3231zcnd 9335 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  CC )
3329, 4zmulcld 9340 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  ZZ )
3433zcnd 9335 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  CC )
3532, 34addcld 7939 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC )
36 pncan1 8296 . . . . . . 7  |-  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC  ->  ( (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
3735, 36syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3827, 37eqtrd 2203 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3938adantr 274 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4010, 39eqtrd 2203 . . 3  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4140oveq1d 5868 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 ) )
42 4cn 8956 . . . . . . 7  |-  4  e.  CC
4342a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  4  e.  CC )
4430zcnd 9335 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  CC )
4543, 44, 12adddid 7944 . . . . 5  |-  ( N  e.  ZZ  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
4645eqcomd 2176 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  =  ( 4  x.  (
( N ^ 2 )  +  N ) ) )
4746oveq1d 5868 . . 3  |-  ( N  e.  ZZ  ->  (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 ) )
4847adantr 274 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  / 
8 )  =  ( ( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 ) )
49 4t2e8 9036 . . . . . . 7  |-  ( 4  x.  2 )  =  8
5049a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  (
4  x.  2 )  =  8 )
5150eqcomd 2176 . . . . 5  |-  ( N  e.  ZZ  ->  8  =  ( 4  x.  2 ) )
5251oveq2d 5869 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
( 4  x.  2 ) ) )
5330, 4zaddcld 9338 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  ZZ )
5453zcnd 9335 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  CC )
55 2ap0 8971 . . . . . 6  |-  2 #  0
5655a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  2 #  0 )
57 4ap0 8977 . . . . . 6  |-  4 #  0
5857a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  4 #  0 )
5954, 11, 43, 56, 58divcanap5d 8734 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  ( 4  x.  2 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
6012sqvald 10606 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
6160oveq1d 5868 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  N ) )
6212mulid1d 7937 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  x.  1 )  =  N )
6362eqcomd 2176 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  =  ( N  x.  1 ) )
6463oveq2d 5869 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
65 1cnd 7936 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
66 adddi 7906 . . . . . . . 8  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
6766eqcomd 2176 . . . . . . 7  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6812, 12, 65, 67syl3anc 1233 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6961, 64, 683eqtrd 2207 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
7069oveq1d 5868 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7152, 59, 703eqtrd 2207 . . 3  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7271adantr 274 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
7341, 48, 723eqtrd 2207 1  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    - cmin 8090   # cap 8500    / cdiv 8589   2c2 8929   4c4 8931   8c8 8935   ZZcz 9212   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  sqoddm1div8z  11845
  Copyright terms: Public domain W3C validator