ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8 Unicode version

Theorem sqoddm1div8 10608
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 5849 . . . . . 6  |-  ( M  =  ( ( 2  x.  N )  +  1 )  ->  ( M ^ 2 )  =  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
2 2z 9219 . . . . . . . . . 10  |-  2  e.  ZZ
32a1i 9 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
4 id 19 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
53, 4zmulcld 9319 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
65zcnd 9314 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
7 binom21 10567 . . . . . . 7  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
86, 7syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
91, 8sylan9eqr 2221 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( M ^
2 )  =  ( ( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
109oveq1d 5857 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 ) )
11 2cnd 8930 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  CC )
12 zcn 9196 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
1311, 12sqmuld 10600 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
14 sq2 10550 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
1514a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2 ^ 2 )  =  4 )
1615oveq1d 5857 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
1713, 16eqtrd 2198 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
18 mulass 7884 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
1918eqcomd 2171 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
2011, 11, 12, 19syl3anc 1228 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
21 2t2e4 9011 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
2221a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2  x.  2 )  =  4 )
2322oveq1d 5857 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
2420, 23eqtrd 2198 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( 4  x.  N ) )
2517, 24oveq12d 5860 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
2625oveq1d 5857 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 ) )
2726oveq1d 5857 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 ) )
28 4z 9221 . . . . . . . . . . 11  |-  4  e.  ZZ
2928a1i 9 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  4  e.  ZZ )
30 zsqcl 10525 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
3129, 30zmulcld 9319 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  ZZ )
3231zcnd 9314 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  CC )
3329, 4zmulcld 9319 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  ZZ )
3433zcnd 9314 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  CC )
3532, 34addcld 7918 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC )
36 pncan1 8275 . . . . . . 7  |-  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC  ->  ( (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
3735, 36syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3827, 37eqtrd 2198 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3938adantr 274 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4010, 39eqtrd 2198 . . 3  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4140oveq1d 5857 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 ) )
42 4cn 8935 . . . . . . 7  |-  4  e.  CC
4342a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  4  e.  CC )
4430zcnd 9314 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  CC )
4543, 44, 12adddid 7923 . . . . 5  |-  ( N  e.  ZZ  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
4645eqcomd 2171 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  =  ( 4  x.  (
( N ^ 2 )  +  N ) ) )
4746oveq1d 5857 . . 3  |-  ( N  e.  ZZ  ->  (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 ) )
4847adantr 274 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  / 
8 )  =  ( ( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 ) )
49 4t2e8 9015 . . . . . . 7  |-  ( 4  x.  2 )  =  8
5049a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  (
4  x.  2 )  =  8 )
5150eqcomd 2171 . . . . 5  |-  ( N  e.  ZZ  ->  8  =  ( 4  x.  2 ) )
5251oveq2d 5858 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
( 4  x.  2 ) ) )
5330, 4zaddcld 9317 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  ZZ )
5453zcnd 9314 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  CC )
55 2ap0 8950 . . . . . 6  |-  2 #  0
5655a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  2 #  0 )
57 4ap0 8956 . . . . . 6  |-  4 #  0
5857a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  4 #  0 )
5954, 11, 43, 56, 58divcanap5d 8713 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  ( 4  x.  2 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
6012sqvald 10585 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
6160oveq1d 5857 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  N ) )
6212mulid1d 7916 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  x.  1 )  =  N )
6362eqcomd 2171 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  =  ( N  x.  1 ) )
6463oveq2d 5858 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
65 1cnd 7915 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
66 adddi 7885 . . . . . . . 8  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
6766eqcomd 2171 . . . . . . 7  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6812, 12, 65, 67syl3anc 1228 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6961, 64, 683eqtrd 2202 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
7069oveq1d 5857 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7152, 59, 703eqtrd 2202 . . 3  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7271adantr 274 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
7341, 48, 723eqtrd 2202 1  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    - cmin 8069   # cap 8479    / cdiv 8568   2c2 8908   4c4 8910   8c8 8914   ZZcz 9191   ^cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  sqoddm1div8z  11823
  Copyright terms: Public domain W3C validator