ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8 Unicode version

Theorem sqoddm1div8 10802
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 5932 . . . . . 6  |-  ( M  =  ( ( 2  x.  N )  +  1 )  ->  ( M ^ 2 )  =  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
2 2z 9371 . . . . . . . . . 10  |-  2  e.  ZZ
32a1i 9 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
4 id 19 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
53, 4zmulcld 9471 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
65zcnd 9466 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
7 binom21 10761 . . . . . . 7  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
86, 7syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
91, 8sylan9eqr 2251 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( M ^
2 )  =  ( ( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
109oveq1d 5940 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 ) )
11 2cnd 9080 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  CC )
12 zcn 9348 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
1311, 12sqmuld 10794 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
14 sq2 10744 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
1514a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2 ^ 2 )  =  4 )
1615oveq1d 5940 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
1713, 16eqtrd 2229 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
18 mulass 8027 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
1918eqcomd 2202 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
2011, 11, 12, 19syl3anc 1249 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
21 2t2e4 9162 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
2221a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2  x.  2 )  =  4 )
2322oveq1d 5940 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
2420, 23eqtrd 2229 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( 4  x.  N ) )
2517, 24oveq12d 5943 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
2625oveq1d 5940 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 ) )
2726oveq1d 5940 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 ) )
28 4z 9373 . . . . . . . . . . 11  |-  4  e.  ZZ
2928a1i 9 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  4  e.  ZZ )
30 zsqcl 10719 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
3129, 30zmulcld 9471 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  ZZ )
3231zcnd 9466 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  CC )
3329, 4zmulcld 9471 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  ZZ )
3433zcnd 9466 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  CC )
3532, 34addcld 8063 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC )
36 pncan1 8420 . . . . . . 7  |-  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC  ->  ( (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
3735, 36syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3827, 37eqtrd 2229 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3938adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4010, 39eqtrd 2229 . . 3  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4140oveq1d 5940 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 ) )
42 4cn 9085 . . . . . . 7  |-  4  e.  CC
4342a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  4  e.  CC )
4430zcnd 9466 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  CC )
4543, 44, 12adddid 8068 . . . . 5  |-  ( N  e.  ZZ  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
4645eqcomd 2202 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  =  ( 4  x.  (
( N ^ 2 )  +  N ) ) )
4746oveq1d 5940 . . 3  |-  ( N  e.  ZZ  ->  (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 ) )
4847adantr 276 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  / 
8 )  =  ( ( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 ) )
49 4t2e8 9166 . . . . . . 7  |-  ( 4  x.  2 )  =  8
5049a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  (
4  x.  2 )  =  8 )
5150eqcomd 2202 . . . . 5  |-  ( N  e.  ZZ  ->  8  =  ( 4  x.  2 ) )
5251oveq2d 5941 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
( 4  x.  2 ) ) )
5330, 4zaddcld 9469 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  ZZ )
5453zcnd 9466 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  CC )
55 2ap0 9100 . . . . . 6  |-  2 #  0
5655a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  2 #  0 )
57 4ap0 9106 . . . . . 6  |-  4 #  0
5857a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  4 #  0 )
5954, 11, 43, 56, 58divcanap5d 8861 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  ( 4  x.  2 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
6012sqvald 10779 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
6160oveq1d 5940 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  N ) )
6212mulridd 8060 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  x.  1 )  =  N )
6362eqcomd 2202 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  =  ( N  x.  1 ) )
6463oveq2d 5941 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
65 1cnd 8059 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
66 adddi 8028 . . . . . . . 8  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
6766eqcomd 2202 . . . . . . 7  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6812, 12, 65, 67syl3anc 1249 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6961, 64, 683eqtrd 2233 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
7069oveq1d 5940 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7152, 59, 703eqtrd 2233 . . 3  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7271adantr 276 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
7341, 48, 723eqtrd 2233 1  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    - cmin 8214   # cap 8625    / cdiv 8716   2c2 9058   4c4 9060   8c8 9064   ZZcz 9343   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  sqoddm1div8z  12068
  Copyright terms: Public domain W3C validator