Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqoddm1div8 | Unicode version |
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
sqoddm1div8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . . . . . 6 | |
2 | 2z 9219 | . . . . . . . . . 10 | |
3 | 2 | a1i 9 | . . . . . . . . 9 |
4 | id 19 | . . . . . . . . 9 | |
5 | 3, 4 | zmulcld 9319 | . . . . . . . 8 |
6 | 5 | zcnd 9314 | . . . . . . 7 |
7 | binom21 10567 | . . . . . . 7 | |
8 | 6, 7 | syl 14 | . . . . . 6 |
9 | 1, 8 | sylan9eqr 2221 | . . . . 5 |
10 | 9 | oveq1d 5857 | . . . 4 |
11 | 2cnd 8930 | . . . . . . . . . . 11 | |
12 | zcn 9196 | . . . . . . . . . . 11 | |
13 | 11, 12 | sqmuld 10600 | . . . . . . . . . 10 |
14 | sq2 10550 | . . . . . . . . . . . 12 | |
15 | 14 | a1i 9 | . . . . . . . . . . 11 |
16 | 15 | oveq1d 5857 | . . . . . . . . . 10 |
17 | 13, 16 | eqtrd 2198 | . . . . . . . . 9 |
18 | mulass 7884 | . . . . . . . . . . . 12 | |
19 | 18 | eqcomd 2171 | . . . . . . . . . . 11 |
20 | 11, 11, 12, 19 | syl3anc 1228 | . . . . . . . . . 10 |
21 | 2t2e4 9011 | . . . . . . . . . . . 12 | |
22 | 21 | a1i 9 | . . . . . . . . . . 11 |
23 | 22 | oveq1d 5857 | . . . . . . . . . 10 |
24 | 20, 23 | eqtrd 2198 | . . . . . . . . 9 |
25 | 17, 24 | oveq12d 5860 | . . . . . . . 8 |
26 | 25 | oveq1d 5857 | . . . . . . 7 |
27 | 26 | oveq1d 5857 | . . . . . 6 |
28 | 4z 9221 | . . . . . . . . . . 11 | |
29 | 28 | a1i 9 | . . . . . . . . . 10 |
30 | zsqcl 10525 | . . . . . . . . . 10 | |
31 | 29, 30 | zmulcld 9319 | . . . . . . . . 9 |
32 | 31 | zcnd 9314 | . . . . . . . 8 |
33 | 29, 4 | zmulcld 9319 | . . . . . . . . 9 |
34 | 33 | zcnd 9314 | . . . . . . . 8 |
35 | 32, 34 | addcld 7918 | . . . . . . 7 |
36 | pncan1 8275 | . . . . . . 7 | |
37 | 35, 36 | syl 14 | . . . . . 6 |
38 | 27, 37 | eqtrd 2198 | . . . . 5 |
39 | 38 | adantr 274 | . . . 4 |
40 | 10, 39 | eqtrd 2198 | . . 3 |
41 | 40 | oveq1d 5857 | . 2 |
42 | 4cn 8935 | . . . . . . 7 | |
43 | 42 | a1i 9 | . . . . . 6 |
44 | 30 | zcnd 9314 | . . . . . 6 |
45 | 43, 44, 12 | adddid 7923 | . . . . 5 |
46 | 45 | eqcomd 2171 | . . . 4 |
47 | 46 | oveq1d 5857 | . . 3 |
48 | 47 | adantr 274 | . 2 |
49 | 4t2e8 9015 | . . . . . . 7 | |
50 | 49 | a1i 9 | . . . . . 6 |
51 | 50 | eqcomd 2171 | . . . . 5 |
52 | 51 | oveq2d 5858 | . . . 4 |
53 | 30, 4 | zaddcld 9317 | . . . . . 6 |
54 | 53 | zcnd 9314 | . . . . 5 |
55 | 2ap0 8950 | . . . . . 6 # | |
56 | 55 | a1i 9 | . . . . 5 # |
57 | 4ap0 8956 | . . . . . 6 # | |
58 | 57 | a1i 9 | . . . . 5 # |
59 | 54, 11, 43, 56, 58 | divcanap5d 8713 | . . . 4 |
60 | 12 | sqvald 10585 | . . . . . . 7 |
61 | 60 | oveq1d 5857 | . . . . . 6 |
62 | 12 | mulid1d 7916 | . . . . . . . 8 |
63 | 62 | eqcomd 2171 | . . . . . . 7 |
64 | 63 | oveq2d 5858 | . . . . . 6 |
65 | 1cnd 7915 | . . . . . . 7 | |
66 | adddi 7885 | . . . . . . . 8 | |
67 | 66 | eqcomd 2171 | . . . . . . 7 |
68 | 12, 12, 65, 67 | syl3anc 1228 | . . . . . 6 |
69 | 61, 64, 68 | 3eqtrd 2202 | . . . . 5 |
70 | 69 | oveq1d 5857 | . . . 4 |
71 | 52, 59, 70 | 3eqtrd 2202 | . . 3 |
72 | 71 | adantr 274 | . 2 |
73 | 41, 48, 72 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 cmin 8069 # cap 8479 cdiv 8568 c2 8908 c4 8910 c8 8914 cz 9191 cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: sqoddm1div8z 11823 |
Copyright terms: Public domain | W3C validator |