ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8 Unicode version

Theorem sqoddm1div8 10785
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 5929 . . . . . 6  |-  ( M  =  ( ( 2  x.  N )  +  1 )  ->  ( M ^ 2 )  =  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
2 2z 9354 . . . . . . . . . 10  |-  2  e.  ZZ
32a1i 9 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
4 id 19 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
53, 4zmulcld 9454 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
65zcnd 9449 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
7 binom21 10744 . . . . . . 7  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
86, 7syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
91, 8sylan9eqr 2251 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( M ^
2 )  =  ( ( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
109oveq1d 5937 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 ) )
11 2cnd 9063 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  CC )
12 zcn 9331 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
1311, 12sqmuld 10777 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
14 sq2 10727 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
1514a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2 ^ 2 )  =  4 )
1615oveq1d 5937 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
1713, 16eqtrd 2229 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
18 mulass 8010 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
1918eqcomd 2202 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
2011, 11, 12, 19syl3anc 1249 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
21 2t2e4 9145 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
2221a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2  x.  2 )  =  4 )
2322oveq1d 5937 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
2420, 23eqtrd 2229 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( 4  x.  N ) )
2517, 24oveq12d 5940 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
2625oveq1d 5937 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 ) )
2726oveq1d 5937 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 ) )
28 4z 9356 . . . . . . . . . . 11  |-  4  e.  ZZ
2928a1i 9 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  4  e.  ZZ )
30 zsqcl 10702 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
3129, 30zmulcld 9454 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  ZZ )
3231zcnd 9449 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  CC )
3329, 4zmulcld 9454 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  ZZ )
3433zcnd 9449 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  CC )
3532, 34addcld 8046 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC )
36 pncan1 8403 . . . . . . 7  |-  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC  ->  ( (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
3735, 36syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3827, 37eqtrd 2229 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3938adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4010, 39eqtrd 2229 . . 3  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4140oveq1d 5937 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 ) )
42 4cn 9068 . . . . . . 7  |-  4  e.  CC
4342a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  4  e.  CC )
4430zcnd 9449 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  CC )
4543, 44, 12adddid 8051 . . . . 5  |-  ( N  e.  ZZ  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
4645eqcomd 2202 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  =  ( 4  x.  (
( N ^ 2 )  +  N ) ) )
4746oveq1d 5937 . . 3  |-  ( N  e.  ZZ  ->  (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 ) )
4847adantr 276 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  / 
8 )  =  ( ( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 ) )
49 4t2e8 9149 . . . . . . 7  |-  ( 4  x.  2 )  =  8
5049a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  (
4  x.  2 )  =  8 )
5150eqcomd 2202 . . . . 5  |-  ( N  e.  ZZ  ->  8  =  ( 4  x.  2 ) )
5251oveq2d 5938 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
( 4  x.  2 ) ) )
5330, 4zaddcld 9452 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  ZZ )
5453zcnd 9449 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  CC )
55 2ap0 9083 . . . . . 6  |-  2 #  0
5655a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  2 #  0 )
57 4ap0 9089 . . . . . 6  |-  4 #  0
5857a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  4 #  0 )
5954, 11, 43, 56, 58divcanap5d 8844 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  ( 4  x.  2 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
6012sqvald 10762 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
6160oveq1d 5937 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  N ) )
6212mulridd 8043 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  x.  1 )  =  N )
6362eqcomd 2202 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  =  ( N  x.  1 ) )
6463oveq2d 5938 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
65 1cnd 8042 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
66 adddi 8011 . . . . . . . 8  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
6766eqcomd 2202 . . . . . . 7  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6812, 12, 65, 67syl3anc 1249 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6961, 64, 683eqtrd 2233 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
7069oveq1d 5937 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7152, 59, 703eqtrd 2233 . . 3  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7271adantr 276 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
7341, 48, 723eqtrd 2233 1  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    - cmin 8197   # cap 8608    / cdiv 8699   2c2 9041   4c4 9043   8c8 9047   ZZcz 9326   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  sqoddm1div8z  12051
  Copyright terms: Public domain W3C validator