| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cjadd | Unicode version | ||
| Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| cjadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | readd 11213 |
. . . 4
| |
| 2 | imadd 11221 |
. . . . . 6
| |
| 3 | 2 | oveq2d 5962 |
. . . . 5
|
| 4 | ax-icn 8022 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | imcl 11198 |
. . . . . . . 8
| |
| 7 | 6 | adantr 276 |
. . . . . . 7
|
| 8 | 7 | recnd 8103 |
. . . . . 6
|
| 9 | imcl 11198 |
. . . . . . . 8
| |
| 10 | 9 | adantl 277 |
. . . . . . 7
|
| 11 | 10 | recnd 8103 |
. . . . . 6
|
| 12 | 5, 8, 11 | adddid 8099 |
. . . . 5
|
| 13 | 3, 12 | eqtrd 2238 |
. . . 4
|
| 14 | 1, 13 | oveq12d 5964 |
. . 3
|
| 15 | recl 11197 |
. . . . . 6
| |
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | 16 | recnd 8103 |
. . . 4
|
| 18 | recl 11197 |
. . . . . 6
| |
| 19 | 18 | adantl 277 |
. . . . 5
|
| 20 | 19 | recnd 8103 |
. . . 4
|
| 21 | mulcl 8054 |
. . . . 5
| |
| 22 | 4, 8, 21 | sylancr 414 |
. . . 4
|
| 23 | mulcl 8054 |
. . . . 5
| |
| 24 | 4, 11, 23 | sylancr 414 |
. . . 4
|
| 25 | 17, 20, 22, 24 | addsub4d 8432 |
. . 3
|
| 26 | 14, 25 | eqtrd 2238 |
. 2
|
| 27 | addcl 8052 |
. . 3
| |
| 28 | remim 11204 |
. . 3
| |
| 29 | 27, 28 | syl 14 |
. 2
|
| 30 | remim 11204 |
. . 3
| |
| 31 | remim 11204 |
. . 3
| |
| 32 | 30, 31 | oveqan12d 5965 |
. 2
|
| 33 | 26, 29, 32 | 3eqtr4d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-2 9097 df-cj 11186 df-re 11187 df-im 11188 |
| This theorem is referenced by: cjsub 11236 cjreim 11247 cjaddi 11276 cjaddd 11309 sqabsadd 11399 fsumcj 11818 efcj 12017 |
| Copyright terms: Public domain | W3C validator |