ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjadd Unicode version

Theorem cjadd 10766
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( * `  A )  +  ( * `  B ) ) )

Proof of Theorem cjadd
StepHypRef Expression
1 readd 10751 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B )
)  =  ( ( Re `  A )  +  ( Re `  B ) ) )
2 imadd 10759 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B )
)  =  ( ( Im `  A )  +  ( Im `  B ) ) )
32oveq2d 5834 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  +  B ) ) )  =  ( _i  x.  ( ( Im `  A )  +  ( Im `  B ) ) ) )
4 ax-icn 7810 . . . . . . 7  |-  _i  e.  CC
54a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
6 imcl 10736 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76adantr 274 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
87recnd 7889 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
9 imcl 10736 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
109adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1110recnd 7889 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
125, 8, 11adddid 7885 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  +  ( Im
`  B ) ) )  =  ( ( _i  x.  ( Im
`  A ) )  +  ( _i  x.  ( Im `  B ) ) ) )
133, 12eqtrd 2190 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  +  B ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  B )
) ) )
141, 13oveq12d 5836 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) )  =  ( ( ( Re `  A )  +  ( Re `  B ) )  -  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  ( Im `  B ) ) ) ) )
15 recl 10735 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1615adantr 274 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
1716recnd 7889 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
18 recl 10735 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1918adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
2019recnd 7889 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
21 mulcl 7842 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
224, 8, 21sylancr 411 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
23 mulcl 7842 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
244, 11, 23sylancr 411 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2517, 20, 22, 24addsub4d 8216 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
2614, 25eqtrd 2190 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) )  =  ( ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) ) )
27 addcl 7840 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
28 remim 10742 . . 3  |-  ( ( A  +  B )  e.  CC  ->  (
* `  ( A  +  B ) )  =  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) ) )
2927, 28syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( Re `  ( A  +  B ) )  -  ( _i  x.  ( Im `  ( A  +  B ) ) ) ) )
30 remim 10742 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
31 remim 10742 . . 3  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
3230, 31oveqan12d 5837 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  +  ( * `  B ) )  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
3326, 29, 323eqtr4d 2200 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( * `  A )  +  ( * `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   ` cfv 5167  (class class class)co 5818   CCcc 7713   RRcr 7714   _ici 7717    + caddc 7718    x. cmul 7720    - cmin 8029   *ccj 10721   Recre 10722   Imcim 10723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-po 4255  df-iso 4256  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-2 8875  df-cj 10724  df-re 10725  df-im 10726
This theorem is referenced by:  cjsub  10774  cjreim  10785  cjaddi  10814  cjaddd  10847  sqabsadd  10937  fsumcj  11353  efcj  11552
  Copyright terms: Public domain W3C validator