Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cjadd | Unicode version |
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readd 10751 | . . . 4 | |
2 | imadd 10759 | . . . . . 6 | |
3 | 2 | oveq2d 5834 | . . . . 5 |
4 | ax-icn 7810 | . . . . . . 7 | |
5 | 4 | a1i 9 | . . . . . 6 |
6 | imcl 10736 | . . . . . . . 8 | |
7 | 6 | adantr 274 | . . . . . . 7 |
8 | 7 | recnd 7889 | . . . . . 6 |
9 | imcl 10736 | . . . . . . . 8 | |
10 | 9 | adantl 275 | . . . . . . 7 |
11 | 10 | recnd 7889 | . . . . . 6 |
12 | 5, 8, 11 | adddid 7885 | . . . . 5 |
13 | 3, 12 | eqtrd 2190 | . . . 4 |
14 | 1, 13 | oveq12d 5836 | . . 3 |
15 | recl 10735 | . . . . . 6 | |
16 | 15 | adantr 274 | . . . . 5 |
17 | 16 | recnd 7889 | . . . 4 |
18 | recl 10735 | . . . . . 6 | |
19 | 18 | adantl 275 | . . . . 5 |
20 | 19 | recnd 7889 | . . . 4 |
21 | mulcl 7842 | . . . . 5 | |
22 | 4, 8, 21 | sylancr 411 | . . . 4 |
23 | mulcl 7842 | . . . . 5 | |
24 | 4, 11, 23 | sylancr 411 | . . . 4 |
25 | 17, 20, 22, 24 | addsub4d 8216 | . . 3 |
26 | 14, 25 | eqtrd 2190 | . 2 |
27 | addcl 7840 | . . 3 | |
28 | remim 10742 | . . 3 | |
29 | 27, 28 | syl 14 | . 2 |
30 | remim 10742 | . . 3 | |
31 | remim 10742 | . . 3 | |
32 | 30, 31 | oveqan12d 5837 | . 2 |
33 | 26, 29, 32 | 3eqtr4d 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cfv 5167 (class class class)co 5818 cc 7713 cr 7714 ci 7717 caddc 7718 cmul 7720 cmin 8029 ccj 10721 cre 10722 cim 10723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-2 8875 df-cj 10724 df-re 10725 df-im 10726 |
This theorem is referenced by: cjsub 10774 cjreim 10785 cjaddi 10814 cjaddd 10847 sqabsadd 10937 fsumcj 11353 efcj 11552 |
Copyright terms: Public domain | W3C validator |