ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc Unicode version

Theorem modqcyc 10163
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )

Proof of Theorem modqcyc
StepHypRef Expression
1 simpll 519 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  QQ )
2 zq 9445 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
32ad2antlr 481 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  QQ )
4 simprl 521 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  QQ )
5 qmulcl 9456 . . . . . 6  |-  ( ( N  e.  QQ  /\  B  e.  QQ )  ->  ( N  x.  B
)  e.  QQ )
63, 4, 5syl2anc 409 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  QQ )
7 qaddcl 9454 . . . . 5  |-  ( ( A  e.  QQ  /\  ( N  x.  B
)  e.  QQ )  ->  ( A  +  ( N  x.  B
) )  e.  QQ )
81, 6, 7syl2anc 409 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  +  ( N  x.  B ) )  e.  QQ )
9 simprr 522 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
0  <  B )
10 modqval 10128 . . . 4  |-  ( ( ( A  +  ( N  x.  B ) )  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
118, 4, 9, 10syl3anc 1217 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
12 qcn 9453 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  A  e.  CC )
131, 12syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  CC )
14 qcn 9453 . . . . . . . . . . 11  |-  ( ( N  x.  B )  e.  QQ  ->  ( N  x.  B )  e.  CC )
156, 14syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  CC )
16 qcn 9453 . . . . . . . . . . 11  |-  ( B  e.  QQ  ->  B  e.  CC )
174, 16syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  CC )
18 qre 9444 . . . . . . . . . . . 12  |-  ( B  e.  QQ  ->  B  e.  RR )
194, 18syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  RR )
2019, 9gt0ap0d 8415 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B #  0 )
2113, 15, 17, 20divdirapd 8613 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  ( ( N  x.  B )  /  B ) ) )
22 simplr 520 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  ZZ )
2322zcnd 9198 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  CC )
2423, 17, 20divcanap4d 8580 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( N  x.  B )  /  B
)  =  N )
2524oveq2d 5798 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  /  B )  +  ( ( N  x.  B
)  /  B ) )  =  ( ( A  /  B )  +  N ) )
2621, 25eqtrd 2173 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  N ) )
2726fveq2d 5433 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( |_
`  ( ( A  /  B )  +  N ) ) )
289gt0ne0d 8298 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  =/=  0 )
29 qdivcl 9462 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
301, 4, 28, 29syl3anc 1217 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  /  B
)  e.  QQ )
31 flqaddz 10101 . . . . . . . 8  |-  ( ( ( A  /  B
)  e.  QQ  /\  N  e.  ZZ )  ->  ( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3230, 22, 31syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3327, 32eqtrd 2173 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3433oveq2d 5798 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( B  x.  ( ( |_ `  ( A  /  B
) )  +  N
) ) )
3530flqcld 10081 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  ZZ )
3635zcnd 9198 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  CC )
3717, 36, 23adddid 7814 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  (
( |_ `  ( A  /  B ) )  +  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( B  x.  N
) ) )
3817, 23mulcomd 7811 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  N
)  =  ( N  x.  B ) )
3938oveq2d 5798 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( B  x.  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4034, 37, 393eqtrd 2177 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4140oveq2d 5798 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B
) )  /  B
) ) ) )  =  ( ( A  +  ( N  x.  B ) )  -  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) ) )
4217, 36mulcld 7810 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( A  /  B ) ) )  e.  CC )
4313, 42, 15pnpcan2d 8135 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  (
( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4411, 41, 433eqtrd 2177 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
45 modqval 10128 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
461, 4, 9, 45syl3anc 1217 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4744, 46eqtr4d 2176 1  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    =/= wne 2309   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644    + caddc 7647    x. cmul 7649    < clt 7824    - cmin 7957    / cdiv 8456   ZZcz 9078   QQcq 9438   |_cfl 10072    mod cmo 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127
This theorem is referenced by:  modqcyc2  10164  mulqaddmodid  10168  qnegmod  10173  modsumfzodifsn  10200
  Copyright terms: Public domain W3C validator