| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqcyc | Unicode version | ||
| Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqcyc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . 5
| |
| 2 | zq 9746 |
. . . . . . 7
| |
| 3 | 2 | ad2antlr 489 |
. . . . . 6
|
| 4 | simprl 529 |
. . . . . 6
| |
| 5 | qmulcl 9757 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . 5
|
| 7 | qaddcl 9755 |
. . . . 5
| |
| 8 | 1, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | simprr 531 |
. . . 4
| |
| 10 | modqval 10467 |
. . . 4
| |
| 11 | 8, 4, 9, 10 | syl3anc 1249 |
. . 3
|
| 12 | qcn 9754 |
. . . . . . . . . . 11
| |
| 13 | 1, 12 | syl 14 |
. . . . . . . . . 10
|
| 14 | qcn 9754 |
. . . . . . . . . . 11
| |
| 15 | 6, 14 | syl 14 |
. . . . . . . . . 10
|
| 16 | qcn 9754 |
. . . . . . . . . . 11
| |
| 17 | 4, 16 | syl 14 |
. . . . . . . . . 10
|
| 18 | qre 9745 |
. . . . . . . . . . . 12
| |
| 19 | 4, 18 | syl 14 |
. . . . . . . . . . 11
|
| 20 | 19, 9 | gt0ap0d 8701 |
. . . . . . . . . 10
|
| 21 | 13, 15, 17, 20 | divdirapd 8901 |
. . . . . . . . 9
|
| 22 | simplr 528 |
. . . . . . . . . . . 12
| |
| 23 | 22 | zcnd 9495 |
. . . . . . . . . . 11
|
| 24 | 23, 17, 20 | divcanap4d 8868 |
. . . . . . . . . 10
|
| 25 | 24 | oveq2d 5959 |
. . . . . . . . 9
|
| 26 | 21, 25 | eqtrd 2237 |
. . . . . . . 8
|
| 27 | 26 | fveq2d 5579 |
. . . . . . 7
|
| 28 | 9 | gt0ne0d 8584 |
. . . . . . . . 9
|
| 29 | qdivcl 9763 |
. . . . . . . . 9
| |
| 30 | 1, 4, 28, 29 | syl3anc 1249 |
. . . . . . . 8
|
| 31 | flqaddz 10438 |
. . . . . . . 8
| |
| 32 | 30, 22, 31 | syl2anc 411 |
. . . . . . 7
|
| 33 | 27, 32 | eqtrd 2237 |
. . . . . 6
|
| 34 | 33 | oveq2d 5959 |
. . . . 5
|
| 35 | 30 | flqcld 10418 |
. . . . . . 7
|
| 36 | 35 | zcnd 9495 |
. . . . . 6
|
| 37 | 17, 36, 23 | adddid 8096 |
. . . . 5
|
| 38 | 17, 23 | mulcomd 8093 |
. . . . . 6
|
| 39 | 38 | oveq2d 5959 |
. . . . 5
|
| 40 | 34, 37, 39 | 3eqtrd 2241 |
. . . 4
|
| 41 | 40 | oveq2d 5959 |
. . 3
|
| 42 | 17, 36 | mulcld 8092 |
. . . 4
|
| 43 | 13, 42, 15 | pnpcan2d 8420 |
. . 3
|
| 44 | 11, 41, 43 | 3eqtrd 2241 |
. 2
|
| 45 | modqval 10467 |
. . 3
| |
| 46 | 1, 4, 9, 45 | syl3anc 1249 |
. 2
|
| 47 | 44, 46 | eqtr4d 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-n0 9295 df-z 9372 df-q 9740 df-rp 9775 df-fl 10411 df-mod 10466 |
| This theorem is referenced by: modqcyc2 10503 mulqaddmodid 10507 qnegmod 10512 modsumfzodifsn 10539 modxai 12710 wilthlem1 15423 lgsdir2lem1 15476 lgsdir2lem5 15480 lgseisenlem1 15518 |
| Copyright terms: Public domain | W3C validator |