ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc Unicode version

Theorem modqcyc 10361
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )

Proof of Theorem modqcyc
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  QQ )
2 zq 9628 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
32ad2antlr 489 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  QQ )
4 simprl 529 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  QQ )
5 qmulcl 9639 . . . . . 6  |-  ( ( N  e.  QQ  /\  B  e.  QQ )  ->  ( N  x.  B
)  e.  QQ )
63, 4, 5syl2anc 411 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  QQ )
7 qaddcl 9637 . . . . 5  |-  ( ( A  e.  QQ  /\  ( N  x.  B
)  e.  QQ )  ->  ( A  +  ( N  x.  B
) )  e.  QQ )
81, 6, 7syl2anc 411 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  +  ( N  x.  B ) )  e.  QQ )
9 simprr 531 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
0  <  B )
10 modqval 10326 . . . 4  |-  ( ( ( A  +  ( N  x.  B ) )  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
118, 4, 9, 10syl3anc 1238 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
12 qcn 9636 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  A  e.  CC )
131, 12syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  CC )
14 qcn 9636 . . . . . . . . . . 11  |-  ( ( N  x.  B )  e.  QQ  ->  ( N  x.  B )  e.  CC )
156, 14syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  CC )
16 qcn 9636 . . . . . . . . . . 11  |-  ( B  e.  QQ  ->  B  e.  CC )
174, 16syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  CC )
18 qre 9627 . . . . . . . . . . . 12  |-  ( B  e.  QQ  ->  B  e.  RR )
194, 18syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  RR )
2019, 9gt0ap0d 8588 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B #  0 )
2113, 15, 17, 20divdirapd 8788 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  ( ( N  x.  B )  /  B ) ) )
22 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  ZZ )
2322zcnd 9378 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  CC )
2423, 17, 20divcanap4d 8755 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( N  x.  B )  /  B
)  =  N )
2524oveq2d 5893 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  /  B )  +  ( ( N  x.  B
)  /  B ) )  =  ( ( A  /  B )  +  N ) )
2621, 25eqtrd 2210 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  N ) )
2726fveq2d 5521 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( |_
`  ( ( A  /  B )  +  N ) ) )
289gt0ne0d 8471 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  =/=  0 )
29 qdivcl 9645 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
301, 4, 28, 29syl3anc 1238 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  /  B
)  e.  QQ )
31 flqaddz 10299 . . . . . . . 8  |-  ( ( ( A  /  B
)  e.  QQ  /\  N  e.  ZZ )  ->  ( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3230, 22, 31syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3327, 32eqtrd 2210 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3433oveq2d 5893 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( B  x.  ( ( |_ `  ( A  /  B
) )  +  N
) ) )
3530flqcld 10279 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  ZZ )
3635zcnd 9378 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  CC )
3717, 36, 23adddid 7984 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  (
( |_ `  ( A  /  B ) )  +  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( B  x.  N
) ) )
3817, 23mulcomd 7981 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  N
)  =  ( N  x.  B ) )
3938oveq2d 5893 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( B  x.  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4034, 37, 393eqtrd 2214 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4140oveq2d 5893 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B
) )  /  B
) ) ) )  =  ( ( A  +  ( N  x.  B ) )  -  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) ) )
4217, 36mulcld 7980 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( A  /  B ) ) )  e.  CC )
4313, 42, 15pnpcan2d 8308 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  (
( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4411, 41, 433eqtrd 2214 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
45 modqval 10326 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
461, 4, 9, 45syl3anc 1238 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4744, 46eqtr4d 2213 1  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    + caddc 7816    x. cmul 7818    < clt 7994    - cmin 8130    / cdiv 8631   ZZcz 9255   QQcq 9621   |_cfl 10270    mod cmo 10324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-q 9622  df-rp 9656  df-fl 10272  df-mod 10325
This theorem is referenced by:  modqcyc2  10362  mulqaddmodid  10366  qnegmod  10371  modsumfzodifsn  10398  lgsdir2lem1  14514  lgsdir2lem5  14518  lgseisenlem1  14535
  Copyright terms: Public domain W3C validator