ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc Unicode version

Theorem modqcyc 10451
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )

Proof of Theorem modqcyc
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  QQ )
2 zq 9700 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
32ad2antlr 489 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  QQ )
4 simprl 529 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  QQ )
5 qmulcl 9711 . . . . . 6  |-  ( ( N  e.  QQ  /\  B  e.  QQ )  ->  ( N  x.  B
)  e.  QQ )
63, 4, 5syl2anc 411 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  QQ )
7 qaddcl 9709 . . . . 5  |-  ( ( A  e.  QQ  /\  ( N  x.  B
)  e.  QQ )  ->  ( A  +  ( N  x.  B
) )  e.  QQ )
81, 6, 7syl2anc 411 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  +  ( N  x.  B ) )  e.  QQ )
9 simprr 531 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
0  <  B )
10 modqval 10416 . . . 4  |-  ( ( ( A  +  ( N  x.  B ) )  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
118, 4, 9, 10syl3anc 1249 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
12 qcn 9708 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  A  e.  CC )
131, 12syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  CC )
14 qcn 9708 . . . . . . . . . . 11  |-  ( ( N  x.  B )  e.  QQ  ->  ( N  x.  B )  e.  CC )
156, 14syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  CC )
16 qcn 9708 . . . . . . . . . . 11  |-  ( B  e.  QQ  ->  B  e.  CC )
174, 16syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  CC )
18 qre 9699 . . . . . . . . . . . 12  |-  ( B  e.  QQ  ->  B  e.  RR )
194, 18syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  RR )
2019, 9gt0ap0d 8656 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B #  0 )
2113, 15, 17, 20divdirapd 8856 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  ( ( N  x.  B )  /  B ) ) )
22 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  ZZ )
2322zcnd 9449 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  CC )
2423, 17, 20divcanap4d 8823 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( N  x.  B )  /  B
)  =  N )
2524oveq2d 5938 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  /  B )  +  ( ( N  x.  B
)  /  B ) )  =  ( ( A  /  B )  +  N ) )
2621, 25eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  N ) )
2726fveq2d 5562 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( |_
`  ( ( A  /  B )  +  N ) ) )
289gt0ne0d 8539 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  =/=  0 )
29 qdivcl 9717 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
301, 4, 28, 29syl3anc 1249 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  /  B
)  e.  QQ )
31 flqaddz 10387 . . . . . . . 8  |-  ( ( ( A  /  B
)  e.  QQ  /\  N  e.  ZZ )  ->  ( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3230, 22, 31syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3327, 32eqtrd 2229 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3433oveq2d 5938 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( B  x.  ( ( |_ `  ( A  /  B
) )  +  N
) ) )
3530flqcld 10367 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  ZZ )
3635zcnd 9449 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  CC )
3717, 36, 23adddid 8051 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  (
( |_ `  ( A  /  B ) )  +  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( B  x.  N
) ) )
3817, 23mulcomd 8048 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  N
)  =  ( N  x.  B ) )
3938oveq2d 5938 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( B  x.  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4034, 37, 393eqtrd 2233 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4140oveq2d 5938 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B
) )  /  B
) ) ) )  =  ( ( A  +  ( N  x.  B ) )  -  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) ) )
4217, 36mulcld 8047 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( A  /  B ) ) )  e.  CC )
4313, 42, 15pnpcan2d 8375 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  (
( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4411, 41, 433eqtrd 2233 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
45 modqval 10416 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
461, 4, 9, 45syl3anc 1249 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4744, 46eqtr4d 2232 1  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879    + caddc 7882    x. cmul 7884    < clt 8061    - cmin 8197    / cdiv 8699   ZZcz 9326   QQcq 9693   |_cfl 10358    mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415
This theorem is referenced by:  modqcyc2  10452  mulqaddmodid  10456  qnegmod  10461  modsumfzodifsn  10488  modxai  12585  wilthlem1  15216  lgsdir2lem1  15269  lgsdir2lem5  15273  lgseisenlem1  15311
  Copyright terms: Public domain W3C validator