ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc Unicode version

Theorem modqcyc 10139
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )

Proof of Theorem modqcyc
StepHypRef Expression
1 simpll 518 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  QQ )
2 zq 9425 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
32ad2antlr 480 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  QQ )
4 simprl 520 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  QQ )
5 qmulcl 9436 . . . . . 6  |-  ( ( N  e.  QQ  /\  B  e.  QQ )  ->  ( N  x.  B
)  e.  QQ )
63, 4, 5syl2anc 408 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  QQ )
7 qaddcl 9434 . . . . 5  |-  ( ( A  e.  QQ  /\  ( N  x.  B
)  e.  QQ )  ->  ( A  +  ( N  x.  B
) )  e.  QQ )
81, 6, 7syl2anc 408 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  +  ( N  x.  B ) )  e.  QQ )
9 simprr 521 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
0  <  B )
10 modqval 10104 . . . 4  |-  ( ( ( A  +  ( N  x.  B ) )  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  +  ( N  x.  B ) )  mod  B )  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
118, 4, 9, 10syl3anc 1216 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( ( A  +  ( N  x.  B ) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) ) ) )
12 qcn 9433 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  A  e.  CC )
131, 12syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  CC )
14 qcn 9433 . . . . . . . . . . 11  |-  ( ( N  x.  B )  e.  QQ  ->  ( N  x.  B )  e.  CC )
156, 14syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( N  x.  B
)  e.  CC )
16 qcn 9433 . . . . . . . . . . 11  |-  ( B  e.  QQ  ->  B  e.  CC )
174, 16syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  CC )
18 qre 9424 . . . . . . . . . . . 12  |-  ( B  e.  QQ  ->  B  e.  RR )
194, 18syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  RR )
2019, 9gt0ap0d 8398 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B #  0 )
2113, 15, 17, 20divdirapd 8596 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  ( ( N  x.  B )  /  B ) ) )
22 simplr 519 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  ZZ )
2322zcnd 9181 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  CC )
2423, 17, 20divcanap4d 8563 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( N  x.  B )  /  B
)  =  N )
2524oveq2d 5790 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  /  B )  +  ( ( N  x.  B
)  /  B ) )  =  ( ( A  /  B )  +  N ) )
2621, 25eqtrd 2172 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  /  B
)  =  ( ( A  /  B )  +  N ) )
2726fveq2d 5425 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( |_
`  ( ( A  /  B )  +  N ) ) )
289gt0ne0d 8281 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  =/=  0 )
29 qdivcl 9442 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
301, 4, 28, 29syl3anc 1216 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  /  B
)  e.  QQ )
31 flqaddz 10077 . . . . . . . 8  |-  ( ( ( A  /  B
)  e.  QQ  /\  N  e.  ZZ )  ->  ( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3230, 22, 31syl2anc 408 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  /  B
)  +  N ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3327, 32eqtrd 2172 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  (
( A  +  ( N  x.  B ) )  /  B ) )  =  ( ( |_ `  ( A  /  B ) )  +  N ) )
3433oveq2d 5790 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( B  x.  ( ( |_ `  ( A  /  B
) )  +  N
) ) )
3530flqcld 10057 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  ZZ )
3635zcnd 9181 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( |_ `  ( A  /  B ) )  e.  CC )
3717, 36, 23adddid 7797 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  (
( |_ `  ( A  /  B ) )  +  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( B  x.  N
) ) )
3817, 23mulcomd 7794 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  N
)  =  ( N  x.  B ) )
3938oveq2d 5790 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( B  x.  N ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4034, 37, 393eqtrd 2176 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( ( A  +  ( N  x.  B ) )  /  B ) ) )  =  ( ( B  x.  ( |_ `  ( A  /  B
) ) )  +  ( N  x.  B
) ) )
4140oveq2d 5790 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  ( B  x.  ( |_ `  ( ( A  +  ( N  x.  B
) )  /  B
) ) ) )  =  ( ( A  +  ( N  x.  B ) )  -  ( ( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) ) )
4217, 36mulcld 7793 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  ( |_ `  ( A  /  B ) ) )  e.  CC )
4313, 42, 15pnpcan2d 8118 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  -  (
( B  x.  ( |_ `  ( A  /  B ) ) )  +  ( N  x.  B ) ) )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4411, 41, 433eqtrd 2176 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
45 modqval 10104 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
461, 4, 9, 45syl3anc 1216 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  mod  B
)  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
4744, 46eqtr4d 2175 1  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7625   RRcr 7626   0cc0 7627    + caddc 7630    x. cmul 7632    < clt 7807    - cmin 7940    / cdiv 8439   ZZcz 9061   QQcq 9418   |_cfl 10048    mod cmo 10102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-n0 8985  df-z 9062  df-q 9419  df-rp 9449  df-fl 10050  df-mod 10103
This theorem is referenced by:  modqcyc2  10140  mulqaddmodid  10144  qnegmod  10149  modsumfzodifsn  10176
  Copyright terms: Public domain W3C validator