ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq Unicode version

Theorem mulcmpblnq 7385
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )

Proof of Theorem mulcmpblnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5900 . 2  |-  ( ( ( A  .N  D
)  =  ( B  .N  C )  /\  ( F  .N  S
)  =  ( G  .N  R ) )  ->  ( ( A  .N  D )  .N  ( F  .N  S
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
2 mulclpi 7345 . . . . . . . 8  |-  ( ( A  e.  N.  /\  F  e.  N. )  ->  ( A  .N  F
)  e.  N. )
3 mulclpi 7345 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
42, 3anim12i 338 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  F  e.  N. )  /\  ( B  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
54an4s 588 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
6 mulclpi 7345 . . . . . . . 8  |-  ( ( C  e.  N.  /\  R  e.  N. )  ->  ( C  .N  R
)  e.  N. )
7 mulclpi 7345 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
86, 7anim12i 338 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  R  e.  N. )  /\  ( D  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
98an4s 588 . . . . . 6  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
105, 9anim12i 338 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. ) )  /\  ( ( C  e. 
N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
1110an4s 588 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
12 enqbreq 7373 . . . 4  |-  ( ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G
)  e.  N. )  /\  ( ( C  .N  R )  e.  N.  /\  ( D  .N  S
)  e.  N. )
)  ->  ( <. ( A  .N  F ) ,  ( B  .N  G ) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S ) >.  <->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( B  .N  G
)  .N  ( C  .N  R ) ) ) )
1311, 12syl 14 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R
) ) ) )
14 simplll 533 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  A  e.  N. )
15 simprll 537 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  F  e.  N. )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  D  e.  N. )
17 mulcompig 7348 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
1817adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  =  ( y  .N  x ) )
19 mulasspig 7349 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
2019adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
21 simprrr 540 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  S  e.  N. )
22 mulclpi 7345 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
2322adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  e.  N. )
2414, 15, 16, 18, 20, 21, 23caov4d 6076 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( A  .N  D
)  .N  ( F  .N  S ) ) )
25 simpllr 534 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  B  e.  N. )
26 simprlr 538 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  G  e.  N. )
27 simplrl 535 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  C  e.  N. )
28 simprrl 539 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  R  e.  N. )
2925, 26, 27, 18, 20, 28, 23caov4d 6076 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( C  .N  R
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
3024, 29eqeq12d 2204 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R ) )  <-> 
( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
3113, 30bitrd 188 . 2  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
321, 31imbitrrid 156 1  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   <.cop 3610   class class class wbr 4018  (class class class)co 5891   N.cnpi 7289    .N cmi 7291    ~Q ceq 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-oadd 6439  df-omul 6440  df-ni 7321  df-mi 7323  df-enq 7364
This theorem is referenced by:  mulpipqqs  7390
  Copyright terms: Public domain W3C validator