ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq Unicode version

Theorem mulcmpblnq 7428
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )

Proof of Theorem mulcmpblnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5927 . 2  |-  ( ( ( A  .N  D
)  =  ( B  .N  C )  /\  ( F  .N  S
)  =  ( G  .N  R ) )  ->  ( ( A  .N  D )  .N  ( F  .N  S
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
2 mulclpi 7388 . . . . . . . 8  |-  ( ( A  e.  N.  /\  F  e.  N. )  ->  ( A  .N  F
)  e.  N. )
3 mulclpi 7388 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
42, 3anim12i 338 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  F  e.  N. )  /\  ( B  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
54an4s 588 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
6 mulclpi 7388 . . . . . . . 8  |-  ( ( C  e.  N.  /\  R  e.  N. )  ->  ( C  .N  R
)  e.  N. )
7 mulclpi 7388 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
86, 7anim12i 338 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  R  e.  N. )  /\  ( D  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
98an4s 588 . . . . . 6  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
105, 9anim12i 338 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. ) )  /\  ( ( C  e. 
N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
1110an4s 588 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
12 enqbreq 7416 . . . 4  |-  ( ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G
)  e.  N. )  /\  ( ( C  .N  R )  e.  N.  /\  ( D  .N  S
)  e.  N. )
)  ->  ( <. ( A  .N  F ) ,  ( B  .N  G ) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S ) >.  <->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( B  .N  G
)  .N  ( C  .N  R ) ) ) )
1311, 12syl 14 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R
) ) ) )
14 simplll 533 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  A  e.  N. )
15 simprll 537 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  F  e.  N. )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  D  e.  N. )
17 mulcompig 7391 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
1817adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  =  ( y  .N  x ) )
19 mulasspig 7392 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
2019adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
21 simprrr 540 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  S  e.  N. )
22 mulclpi 7388 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
2322adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  e.  N. )
2414, 15, 16, 18, 20, 21, 23caov4d 6103 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( A  .N  D
)  .N  ( F  .N  S ) ) )
25 simpllr 534 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  B  e.  N. )
26 simprlr 538 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  G  e.  N. )
27 simplrl 535 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  C  e.  N. )
28 simprrl 539 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  R  e.  N. )
2925, 26, 27, 18, 20, 28, 23caov4d 6103 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( C  .N  R
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
3024, 29eqeq12d 2208 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R ) )  <-> 
( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
3113, 30bitrd 188 . 2  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
321, 31imbitrrid 156 1  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   <.cop 3621   class class class wbr 4029  (class class class)co 5918   N.cnpi 7332    .N cmi 7334    ~Q ceq 7339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-ni 7364  df-mi 7366  df-enq 7407
This theorem is referenced by:  mulpipqqs  7433
  Copyright terms: Public domain W3C validator