Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcmpblnq | Unicode version |
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
mulcmpblnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5851 | . 2 | |
2 | mulclpi 7269 | . . . . . . . 8 | |
3 | mulclpi 7269 | . . . . . . . 8 | |
4 | 2, 3 | anim12i 336 | . . . . . . 7 |
5 | 4 | an4s 578 | . . . . . 6 |
6 | mulclpi 7269 | . . . . . . . 8 | |
7 | mulclpi 7269 | . . . . . . . 8 | |
8 | 6, 7 | anim12i 336 | . . . . . . 7 |
9 | 8 | an4s 578 | . . . . . 6 |
10 | 5, 9 | anim12i 336 | . . . . 5 |
11 | 10 | an4s 578 | . . . 4 |
12 | enqbreq 7297 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | simplll 523 | . . . . 5 | |
15 | simprll 527 | . . . . 5 | |
16 | simplrr 526 | . . . . 5 | |
17 | mulcompig 7272 | . . . . . 6 | |
18 | 17 | adantl 275 | . . . . 5 |
19 | mulasspig 7273 | . . . . . 6 | |
20 | 19 | adantl 275 | . . . . 5 |
21 | simprrr 530 | . . . . 5 | |
22 | mulclpi 7269 | . . . . . 6 | |
23 | 22 | adantl 275 | . . . . 5 |
24 | 14, 15, 16, 18, 20, 21, 23 | caov4d 6026 | . . . 4 |
25 | simpllr 524 | . . . . 5 | |
26 | simprlr 528 | . . . . 5 | |
27 | simplrl 525 | . . . . 5 | |
28 | simprrl 529 | . . . . 5 | |
29 | 25, 26, 27, 18, 20, 28, 23 | caov4d 6026 | . . . 4 |
30 | 24, 29 | eqeq12d 2180 | . . 3 |
31 | 13, 30 | bitrd 187 | . 2 |
32 | 1, 31 | syl5ibr 155 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 (class class class)co 5842 cnpi 7213 cmi 7215 ceq 7220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-ni 7245 df-mi 7247 df-enq 7288 |
This theorem is referenced by: mulpipqqs 7314 |
Copyright terms: Public domain | W3C validator |