ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq Unicode version

Theorem mulcmpblnq 7176
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )

Proof of Theorem mulcmpblnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5783 . 2  |-  ( ( ( A  .N  D
)  =  ( B  .N  C )  /\  ( F  .N  S
)  =  ( G  .N  R ) )  ->  ( ( A  .N  D )  .N  ( F  .N  S
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
2 mulclpi 7136 . . . . . . . 8  |-  ( ( A  e.  N.  /\  F  e.  N. )  ->  ( A  .N  F
)  e.  N. )
3 mulclpi 7136 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
42, 3anim12i 336 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  F  e.  N. )  /\  ( B  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
54an4s 577 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
6 mulclpi 7136 . . . . . . . 8  |-  ( ( C  e.  N.  /\  R  e.  N. )  ->  ( C  .N  R
)  e.  N. )
7 mulclpi 7136 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
86, 7anim12i 336 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  R  e.  N. )  /\  ( D  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
98an4s 577 . . . . . 6  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
105, 9anim12i 336 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. ) )  /\  ( ( C  e. 
N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
1110an4s 577 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
12 enqbreq 7164 . . . 4  |-  ( ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G
)  e.  N. )  /\  ( ( C  .N  R )  e.  N.  /\  ( D  .N  S
)  e.  N. )
)  ->  ( <. ( A  .N  F ) ,  ( B  .N  G ) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S ) >.  <->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( B  .N  G
)  .N  ( C  .N  R ) ) ) )
1311, 12syl 14 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R
) ) ) )
14 simplll 522 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  A  e.  N. )
15 simprll 526 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  F  e.  N. )
16 simplrr 525 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  D  e.  N. )
17 mulcompig 7139 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
1817adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  =  ( y  .N  x ) )
19 mulasspig 7140 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
2019adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
21 simprrr 529 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  S  e.  N. )
22 mulclpi 7136 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
2322adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  e.  N. )
2414, 15, 16, 18, 20, 21, 23caov4d 5955 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( A  .N  D
)  .N  ( F  .N  S ) ) )
25 simpllr 523 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  B  e.  N. )
26 simprlr 527 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  G  e.  N. )
27 simplrl 524 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  C  e.  N. )
28 simprrl 528 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  R  e.  N. )
2925, 26, 27, 18, 20, 28, 23caov4d 5955 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( C  .N  R
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
3024, 29eqeq12d 2154 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R ) )  <-> 
( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
3113, 30bitrd 187 . 2  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
321, 31syl5ibr 155 1  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   <.cop 3530   class class class wbr 3929  (class class class)co 5774   N.cnpi 7080    .N cmi 7082    ~Q ceq 7087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-ni 7112  df-mi 7114  df-enq 7155
This theorem is referenced by:  mulpipqqs  7181
  Copyright terms: Public domain W3C validator