| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algcvgb | GIF version | ||
| Description: Two ways of expressing that 𝐶 is a countdown function for algorithm 𝐹. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.) |
| Ref | Expression |
|---|---|
| algcvgb.1 | ⊢ 𝐹:𝑆⟶𝑆 |
| algcvgb.2 | ⊢ 𝐶:𝑆⟶ℕ0 |
| Ref | Expression |
|---|---|
| algcvgb | ⊢ (𝑋 ∈ 𝑆 → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algcvgb.2 | . . 3 ⊢ 𝐶:𝑆⟶ℕ0 | |
| 2 | 1 | ffvelcdmi 5721 | . 2 ⊢ (𝑋 ∈ 𝑆 → (𝐶‘𝑋) ∈ ℕ0) |
| 3 | algcvgb.1 | . . . 4 ⊢ 𝐹:𝑆⟶𝑆 | |
| 4 | 3 | ffvelcdmi 5721 | . . 3 ⊢ (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ 𝑆) |
| 5 | 1 | ffvelcdmi 5721 | . . 3 ⊢ ((𝐹‘𝑋) ∈ 𝑆 → (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑆 → (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) |
| 7 | algcvgblem 12415 | . 2 ⊢ (((𝐶‘𝑋) ∈ ℕ0 ∧ (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) | |
| 8 | 2, 6, 7 | syl2anc 411 | 1 ⊢ (𝑋 ∈ 𝑆 → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4047 ⟶wf 5272 ‘cfv 5276 0cc0 7932 < clt 8114 ℕ0cn0 9302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 |
| This theorem is referenced by: algcvga 12417 |
| Copyright terms: Public domain | W3C validator |