![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > algcvgb | GIF version |
Description: Two ways of expressing that 𝐶 is a countdown function for algorithm 𝐹. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
algcvgb.1 | ⊢ 𝐹:𝑆⟶𝑆 |
algcvgb.2 | ⊢ 𝐶:𝑆⟶ℕ0 |
Ref | Expression |
---|---|
algcvgb | ⊢ (𝑋 ∈ 𝑆 → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algcvgb.2 | . . 3 ⊢ 𝐶:𝑆⟶ℕ0 | |
2 | 1 | ffvelcdmi 5693 | . 2 ⊢ (𝑋 ∈ 𝑆 → (𝐶‘𝑋) ∈ ℕ0) |
3 | algcvgb.1 | . . . 4 ⊢ 𝐹:𝑆⟶𝑆 | |
4 | 3 | ffvelcdmi 5693 | . . 3 ⊢ (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ 𝑆) |
5 | 1 | ffvelcdmi 5693 | . . 3 ⊢ ((𝐹‘𝑋) ∈ 𝑆 → (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑆 → (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) |
7 | algcvgblem 12190 | . 2 ⊢ (((𝐶‘𝑋) ∈ ℕ0 ∧ (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) | |
8 | 2, 6, 7 | syl2anc 411 | 1 ⊢ (𝑋 ∈ 𝑆 → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 class class class wbr 4030 ⟶wf 5251 ‘cfv 5255 0cc0 7874 < clt 8056 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 |
This theorem is referenced by: algcvga 12192 |
Copyright terms: Public domain | W3C validator |