ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgb GIF version

Theorem algcvgb 12538
Description: Two ways of expressing that 𝐶 is a countdown function for algorithm 𝐹. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
algcvgb.1 𝐹:𝑆𝑆
algcvgb.2 𝐶:𝑆⟶ℕ0
Assertion
Ref Expression
algcvgb (𝑋𝑆 → (((𝐶‘(𝐹𝑋)) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ↔ (((𝐶𝑋) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ∧ ((𝐶𝑋) = 0 → (𝐶‘(𝐹𝑋)) = 0))))

Proof of Theorem algcvgb
StepHypRef Expression
1 algcvgb.2 . . 3 𝐶:𝑆⟶ℕ0
21ffvelcdmi 5742 . 2 (𝑋𝑆 → (𝐶𝑋) ∈ ℕ0)
3 algcvgb.1 . . . 4 𝐹:𝑆𝑆
43ffvelcdmi 5742 . . 3 (𝑋𝑆 → (𝐹𝑋) ∈ 𝑆)
51ffvelcdmi 5742 . . 3 ((𝐹𝑋) ∈ 𝑆 → (𝐶‘(𝐹𝑋)) ∈ ℕ0)
64, 5syl 14 . 2 (𝑋𝑆 → (𝐶‘(𝐹𝑋)) ∈ ℕ0)
7 algcvgblem 12537 . 2 (((𝐶𝑋) ∈ ℕ0 ∧ (𝐶‘(𝐹𝑋)) ∈ ℕ0) → (((𝐶‘(𝐹𝑋)) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ↔ (((𝐶𝑋) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ∧ ((𝐶𝑋) = 0 → (𝐶‘(𝐹𝑋)) = 0))))
82, 6, 7syl2anc 411 1 (𝑋𝑆 → (((𝐶‘(𝐹𝑋)) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ↔ (((𝐶𝑋) ≠ 0 → (𝐶‘(𝐹𝑋)) < (𝐶𝑋)) ∧ ((𝐶𝑋) = 0 → (𝐶‘(𝐹𝑋)) = 0))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wne 2380   class class class wbr 4062  wf 5290  cfv 5294  0cc0 7967   < clt 8149  0cn0 9337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415
This theorem is referenced by:  algcvga  12539
  Copyright terms: Public domain W3C validator