| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algcvgb | GIF version | ||
| Description: Two ways of expressing that 𝐶 is a countdown function for algorithm 𝐹. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.) |
| Ref | Expression |
|---|---|
| algcvgb.1 | ⊢ 𝐹:𝑆⟶𝑆 |
| algcvgb.2 | ⊢ 𝐶:𝑆⟶ℕ0 |
| Ref | Expression |
|---|---|
| algcvgb | ⊢ (𝑋 ∈ 𝑆 → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algcvgb.2 | . . 3 ⊢ 𝐶:𝑆⟶ℕ0 | |
| 2 | 1 | ffvelcdmi 5699 | . 2 ⊢ (𝑋 ∈ 𝑆 → (𝐶‘𝑋) ∈ ℕ0) |
| 3 | algcvgb.1 | . . . 4 ⊢ 𝐹:𝑆⟶𝑆 | |
| 4 | 3 | ffvelcdmi 5699 | . . 3 ⊢ (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ 𝑆) |
| 5 | 1 | ffvelcdmi 5699 | . . 3 ⊢ ((𝐹‘𝑋) ∈ 𝑆 → (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑆 → (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) |
| 7 | algcvgblem 12242 | . 2 ⊢ (((𝐶‘𝑋) ∈ ℕ0 ∧ (𝐶‘(𝐹‘𝑋)) ∈ ℕ0) → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) | |
| 8 | 2, 6, 7 | syl2anc 411 | 1 ⊢ (𝑋 ∈ 𝑆 → (((𝐶‘(𝐹‘𝑋)) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ↔ (((𝐶‘𝑋) ≠ 0 → (𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋)) ∧ ((𝐶‘𝑋) = 0 → (𝐶‘(𝐹‘𝑋)) = 0)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ⟶wf 5255 ‘cfv 5259 0cc0 7896 < clt 8078 ℕ0cn0 9266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: algcvga 12244 |
| Copyright terms: Public domain | W3C validator |