ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm Unicode version

Theorem subrgsubm 14029
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
subrgsubm  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2205 . . 3  |-  ( Base `  R )  =  (
Base `  R )
21subrgss 14017 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3 eqid 2205 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
43subrg1cl 14024 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
5 subrgrcl 14021 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
6 eqid 2205 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
7 subrgsubm.1 . . . . 5  |-  M  =  (mulGrp `  R )
86, 7mgpress 13726 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  (SubRing `  R )
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
95, 8mpancom 422 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
106subrgring 14019 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
11 eqid 2205 . . . . 5  |-  (mulGrp `  ( Rs  A ) )  =  (mulGrp `  ( Rs  A
) )
1211ringmgp 13797 . . . 4  |-  ( ( Rs  A )  e.  Ring  -> 
(mulGrp `  ( Rs  A
) )  e.  Mnd )
1310, 12syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  (mulGrp `  ( Rs  A ) )  e. 
Mnd )
149, 13eqeltrd 2282 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  e.  Mnd )
157ringmgp 13797 . . . . 5  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
16 eqid 2205 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
17 eqid 2205 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
18 eqid 2205 . . . . . 6  |-  ( Ms  A )  =  ( Ms  A )
1916, 17, 18issubm2 13338 . . . . 5  |-  ( M  e.  Mnd  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
2015, 19syl 14 . . . 4  |-  ( R  e.  Ring  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
215, 20syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
227, 1mgpbasg 13721 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
2322sseq2d 3223 . . . . . 6  |-  ( R  e.  Ring  ->  ( A 
C_  ( Base `  R
)  <->  A  C_  ( Base `  M ) ) )
247, 3ringidvalg 13756 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
2524eleq1d 2274 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  A  <->  ( 0g `  M )  e.  A
) )
2623, 253anbi12d 1326 . . . . 5  |-  ( R  e.  Ring  ->  ( ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
2726bibi2d 232 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R
)  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
285, 27syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
2921, 28mpbird 167 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
302, 4, 14, 29mpbir3and 1183 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   ` cfv 5272  (class class class)co 5946   Basecbs 12865   ↾s cress 12866   0gc0g 13121   Mndcmnd 13281  SubMndcsubmnd 13323  mulGrpcmgp 13715   1rcur 13754   Ringcrg 13791  SubRingcsubrg 14012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-submnd 13325  df-mgp 13716  df-ur 13755  df-ring 13793  df-subrg 14014
This theorem is referenced by:  resrhm  14043  resrhm2b  14044  rhmima  14046  lgseisenlem4  15583
  Copyright terms: Public domain W3C validator