ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm Unicode version

Theorem subrgsubm 13790
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
subrgsubm  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( Base `  R )  =  (
Base `  R )
21subrgss 13778 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3 eqid 2196 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
43subrg1cl 13785 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
5 subrgrcl 13782 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
6 eqid 2196 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
7 subrgsubm.1 . . . . 5  |-  M  =  (mulGrp `  R )
86, 7mgpress 13487 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  (SubRing `  R )
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
95, 8mpancom 422 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
106subrgring 13780 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
11 eqid 2196 . . . . 5  |-  (mulGrp `  ( Rs  A ) )  =  (mulGrp `  ( Rs  A
) )
1211ringmgp 13558 . . . 4  |-  ( ( Rs  A )  e.  Ring  -> 
(mulGrp `  ( Rs  A
) )  e.  Mnd )
1310, 12syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  (mulGrp `  ( Rs  A ) )  e. 
Mnd )
149, 13eqeltrd 2273 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  e.  Mnd )
157ringmgp 13558 . . . . 5  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
16 eqid 2196 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
17 eqid 2196 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
18 eqid 2196 . . . . . 6  |-  ( Ms  A )  =  ( Ms  A )
1916, 17, 18issubm2 13105 . . . . 5  |-  ( M  e.  Mnd  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
2015, 19syl 14 . . . 4  |-  ( R  e.  Ring  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
215, 20syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
227, 1mgpbasg 13482 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
2322sseq2d 3213 . . . . . 6  |-  ( R  e.  Ring  ->  ( A 
C_  ( Base `  R
)  <->  A  C_  ( Base `  M ) ) )
247, 3ringidvalg 13517 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
2524eleq1d 2265 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  A  <->  ( 0g `  M )  e.  A
) )
2623, 253anbi12d 1324 . . . . 5  |-  ( R  e.  Ring  ->  ( ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
2726bibi2d 232 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R
)  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
285, 27syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
2921, 28mpbird 167 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
302, 4, 14, 29mpbir3and 1182 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   0gc0g 12927   Mndcmnd 13057  SubMndcsubmnd 13090  mulGrpcmgp 13476   1rcur 13515   Ringcrg 13552  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-submnd 13092  df-mgp 13477  df-ur 13516  df-ring 13554  df-subrg 13775
This theorem is referenced by:  resrhm  13804  resrhm2b  13805  rhmima  13807  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator