ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm Unicode version

Theorem subrgsubm 14111
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
subrgsubm  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2207 . . 3  |-  ( Base `  R )  =  (
Base `  R )
21subrgss 14099 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3 eqid 2207 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
43subrg1cl 14106 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
5 subrgrcl 14103 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
6 eqid 2207 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
7 subrgsubm.1 . . . . 5  |-  M  =  (mulGrp `  R )
86, 7mgpress 13808 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  (SubRing `  R )
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
95, 8mpancom 422 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
106subrgring 14101 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
11 eqid 2207 . . . . 5  |-  (mulGrp `  ( Rs  A ) )  =  (mulGrp `  ( Rs  A
) )
1211ringmgp 13879 . . . 4  |-  ( ( Rs  A )  e.  Ring  -> 
(mulGrp `  ( Rs  A
) )  e.  Mnd )
1310, 12syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  (mulGrp `  ( Rs  A ) )  e. 
Mnd )
149, 13eqeltrd 2284 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  e.  Mnd )
157ringmgp 13879 . . . . 5  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
16 eqid 2207 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
17 eqid 2207 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
18 eqid 2207 . . . . . 6  |-  ( Ms  A )  =  ( Ms  A )
1916, 17, 18issubm2 13420 . . . . 5  |-  ( M  e.  Mnd  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
2015, 19syl 14 . . . 4  |-  ( R  e.  Ring  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
215, 20syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
227, 1mgpbasg 13803 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
2322sseq2d 3231 . . . . . 6  |-  ( R  e.  Ring  ->  ( A 
C_  ( Base `  R
)  <->  A  C_  ( Base `  M ) ) )
247, 3ringidvalg 13838 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
2524eleq1d 2276 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  A  <->  ( 0g `  M )  e.  A
) )
2623, 253anbi12d 1326 . . . . 5  |-  ( R  e.  Ring  ->  ( ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
2726bibi2d 232 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R
)  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
285, 27syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
2921, 28mpbird 167 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
302, 4, 14, 29mpbir3and 1183 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   0gc0g 13203   Mndcmnd 13363  SubMndcsubmnd 13405  mulGrpcmgp 13797   1rcur 13836   Ringcrg 13873  SubRingcsubrg 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-submnd 13407  df-mgp 13798  df-ur 13837  df-ring 13875  df-subrg 14096
This theorem is referenced by:  resrhm  14125  resrhm2b  14126  rhmima  14128  lgseisenlem4  15665
  Copyright terms: Public domain W3C validator