ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm Unicode version

Theorem subrgsubm 13293
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
subrgsubm  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( Base `  R )  =  (
Base `  R )
21subrgss 13281 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3 eqid 2177 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
43subrg1cl 13288 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
5 subrgrcl 13285 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
6 eqid 2177 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
7 subrgsubm.1 . . . . 5  |-  M  =  (mulGrp `  R )
86, 7mgpress 13072 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  (SubRing `  R )
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
95, 8mpancom 422 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
106subrgring 13283 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
11 eqid 2177 . . . . 5  |-  (mulGrp `  ( Rs  A ) )  =  (mulGrp `  ( Rs  A
) )
1211ringmgp 13116 . . . 4  |-  ( ( Rs  A )  e.  Ring  -> 
(mulGrp `  ( Rs  A
) )  e.  Mnd )
1310, 12syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  (mulGrp `  ( Rs  A ) )  e. 
Mnd )
149, 13eqeltrd 2254 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  e.  Mnd )
157ringmgp 13116 . . . . 5  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
16 eqid 2177 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
17 eqid 2177 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
18 eqid 2177 . . . . . 6  |-  ( Ms  A )  =  ( Ms  A )
1916, 17, 18issubm2 12796 . . . . 5  |-  ( M  e.  Mnd  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
2015, 19syl 14 . . . 4  |-  ( R  e.  Ring  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
215, 20syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
227, 1mgpbasg 13067 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
2322sseq2d 3185 . . . . . 6  |-  ( R  e.  Ring  ->  ( A 
C_  ( Base `  R
)  <->  A  C_  ( Base `  M ) ) )
247, 3ringidvalg 13075 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
2524eleq1d 2246 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  A  <->  ( 0g `  M )  e.  A
) )
2623, 253anbi12d 1313 . . . . 5  |-  ( R  e.  Ring  ->  ( ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
2726bibi2d 232 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R
)  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
285, 27syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  A  /\  ( Ms  A )  e.  Mnd ) )  <->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  ( Ms  A )  e.  Mnd )
) ) )
2921, 28mpbird 167 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
302, 4, 14, 29mpbir3and 1180 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3129   ` cfv 5215  (class class class)co 5872   Basecbs 12454   ↾s cress 12455   0gc0g 12693   Mndcmnd 12749  SubMndcsubmnd 12782  mulGrpcmgp 13061   1rcur 13073   Ringcrg 13110  SubRingcsubrg 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-inn 8916  df-2 8974  df-3 8975  df-ndx 12457  df-slot 12458  df-base 12460  df-sets 12461  df-iress 12462  df-plusg 12541  df-mulr 12542  df-0g 12695  df-mgm 12707  df-sgrp 12740  df-mnd 12750  df-submnd 12784  df-mgp 13062  df-ur 13074  df-ring 13112  df-subrg 13278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator