ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumv GIF version

Theorem cbvsumv 11528
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Hypothesis
Ref Expression
cbvsum.1 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvsumv Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvsumv
StepHypRef Expression
1 cbvsum.1 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2339 . 2 𝑘𝐴
3 nfcv 2339 . 2 𝑗𝐴
4 nfcv 2339 . 2 𝑘𝐵
5 nfcv 2339 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvsum 11527 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Σcsu 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-recs 6364  df-frec 6450  df-seqfrec 10542  df-sumdc 11521
This theorem is referenced by:  isumge0  11597  telfsumo  11633  fsumparts  11637  binomlem  11650  mertenslemi1  11702  mertenslem2  11703  mertensabs  11704  efaddlem  11841  plymullem1  14994  plyadd  14997  plymul  14998  plycoeid3  15003  plyco  15005  plycj  15007  dvply1  15011  trilpo  15697  redcwlpo  15709  nconstwlpo  15720  neapmkv  15722
  Copyright terms: Public domain W3C validator