![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvsumv | GIF version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
cbvsum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvsumv | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsum.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2319 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2319 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | nfcv 2319 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | nfcv 2319 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvsum 11371 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Σcsu 11364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-recs 6309 df-frec 6395 df-seqfrec 10449 df-sumdc 11365 |
This theorem is referenced by: isumge0 11441 telfsumo 11477 fsumparts 11481 binomlem 11494 mertenslemi1 11546 mertenslem2 11547 mertensabs 11548 efaddlem 11685 trilpo 14953 redcwlpo 14965 nconstwlpo 14976 neapmkv 14978 |
Copyright terms: Public domain | W3C validator |