| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | GIF version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) | 
| Ref | Expression | 
|---|---|
| cbvsum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| cbvsumv | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvsum.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | nfcv 2339 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | nfcv 2339 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11525 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 Σcsu 11518 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 df-sumdc 11519 | 
| This theorem is referenced by: isumge0 11595 telfsumo 11631 fsumparts 11635 binomlem 11648 mertenslemi1 11700 mertenslem2 11701 mertensabs 11702 efaddlem 11839 plymullem1 14984 plyadd 14987 plymul 14988 plycoeid3 14993 plyco 14995 plycj 14997 dvply1 15001 trilpo 15687 redcwlpo 15699 nconstwlpo 15710 neapmkv 15712 | 
| Copyright terms: Public domain | W3C validator |