| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | GIF version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| cbvsum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvsumv | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2349 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | nfcv 2349 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | nfcv 2349 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11746 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Σcsu 11739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-recs 6404 df-frec 6490 df-seqfrec 10615 df-sumdc 11740 |
| This theorem is referenced by: isumge0 11816 telfsumo 11852 fsumparts 11856 binomlem 11869 mertenslemi1 11921 mertenslem2 11922 mertensabs 11923 efaddlem 12060 plymullem1 15295 plyadd 15298 plymul 15299 plycoeid3 15304 plyco 15306 plycj 15308 dvply1 15312 trilpo 16123 redcwlpo 16135 nconstwlpo 16146 neapmkv 16148 |
| Copyright terms: Public domain | W3C validator |