![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvsumv | GIF version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
cbvsum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvsumv | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsum.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2336 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2336 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | nfcv 2336 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | nfcv 2336 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvsum 11503 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Σcsu 11496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-seqfrec 10519 df-sumdc 11497 |
This theorem is referenced by: isumge0 11573 telfsumo 11609 fsumparts 11613 binomlem 11626 mertenslemi1 11678 mertenslem2 11679 mertensabs 11680 efaddlem 11817 plymullem1 14894 plyadd 14897 plymul 14898 trilpo 15533 redcwlpo 15545 nconstwlpo 15556 neapmkv 15558 |
Copyright terms: Public domain | W3C validator |