| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | GIF version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| cbvsum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvsumv | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2347 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | nfcv 2347 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | nfcv 2347 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11613 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 Σcsu 11606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-seqfrec 10591 df-sumdc 11607 |
| This theorem is referenced by: isumge0 11683 telfsumo 11719 fsumparts 11723 binomlem 11736 mertenslemi1 11788 mertenslem2 11789 mertensabs 11790 efaddlem 11927 plymullem1 15162 plyadd 15165 plymul 15166 plycoeid3 15171 plyco 15173 plycj 15175 dvply1 15179 trilpo 15915 redcwlpo 15927 nconstwlpo 15938 neapmkv 15940 |
| Copyright terms: Public domain | W3C validator |