| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsumv | GIF version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| cbvsum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvsumv | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | nfcv 2339 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | nfcv 2339 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvsum 11542 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Σcsu 11535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10557 df-sumdc 11536 |
| This theorem is referenced by: isumge0 11612 telfsumo 11648 fsumparts 11652 binomlem 11665 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 efaddlem 11856 plymullem1 15068 plyadd 15071 plymul 15072 plycoeid3 15077 plyco 15079 plycj 15081 dvply1 15085 trilpo 15774 redcwlpo 15786 nconstwlpo 15797 neapmkv 15799 |
| Copyright terms: Public domain | W3C validator |