Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvsumv | GIF version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
cbvsum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvsumv | ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsum.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2299 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2299 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | nfcv 2299 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | nfcv 2299 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvsum 11250 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 Σcsu 11243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-cnv 4593 df-dm 4595 df-rn 4596 df-res 4597 df-iota 5134 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-recs 6249 df-frec 6335 df-seqfrec 10338 df-sumdc 11244 |
This theorem is referenced by: isumge0 11320 telfsumo 11356 fsumparts 11360 binomlem 11373 mertenslemi1 11425 mertenslem2 11426 mertensabs 11427 efaddlem 11564 trilpo 13585 redcwlpo 13597 nconstwlpo 13607 neapmkv 13609 |
Copyright terms: Public domain | W3C validator |