ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efaddlem Unicode version

Theorem efaddlem 11408
Description: Lemma for efadd 11409 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efadd.2  |-  G  =  ( n  e.  NN0  |->  ( ( B ^
n )  /  ( ! `  n )
) )
efadd.3  |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^
n )  /  ( ! `  n )
) )
efadd.4  |-  ( ph  ->  A  e.  CC )
efadd.5  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
efaddlem  |-  ( ph  ->  ( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
Distinct variable groups:    A, n    B, n
Allowed substitution hints:    ph( n)    F( n)    G( n)    H( n)

Proof of Theorem efaddlem
Dummy variables  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4  |-  ( ph  ->  A  e.  CC )
2 efadd.5 . . . 4  |-  ( ph  ->  B  e.  CC )
31, 2addcld 7805 . . 3  |-  ( ph  ->  ( A  +  B
)  e.  CC )
4 efadd.3 . . . 4  |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^
n )  /  ( ! `  n )
) )
54efcvg 11400 . . 3  |-  ( ( A  +  B )  e.  CC  ->  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) ) )
63, 5syl 14 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) ) )
7 efadd.1 . . . . . 6  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
87eftvalcn 11391 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  ( ( A ^ j )  /  ( ! `  j ) ) )
91, 8sylan 281 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  ( ( A ^ j
)  /  ( ! `
 j ) ) )
10 absexp 10879 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )
111, 10sylan 281 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( A ^ j
) )  =  ( ( abs `  A
) ^ j ) )
12 faccl 10509 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( ! `
 j )  e.  NN )
1312adantl 275 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j )  e.  NN )
14 nnre 8747 . . . . . . . 8  |-  ( ( ! `  j )  e.  NN  ->  ( ! `  j )  e.  RR )
15 nnnn0 9004 . . . . . . . . 9  |-  ( ( ! `  j )  e.  NN  ->  ( ! `  j )  e.  NN0 )
1615nn0ge0d 9053 . . . . . . . 8  |-  ( ( ! `  j )  e.  NN  ->  0  <_  ( ! `  j
) )
1714, 16absidd 10967 . . . . . . 7  |-  ( ( ! `  j )  e.  NN  ->  ( abs `  ( ! `  j ) )  =  ( ! `  j
) )
1813, 17syl 14 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( ! `  j
) )  =  ( ! `  j ) )
1911, 18oveq12d 5796 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  ( A ^
j ) )  / 
( abs `  ( ! `  j )
) )  =  ( ( ( abs `  A
) ^ j )  /  ( ! `  j ) ) )
20 expcl 10338 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
211, 20sylan 281 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
2213nncnd 8754 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j )  e.  CC )
2313nnap0d 8786 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j ) #  0 )
2421, 22, 23absdivapd 10995 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( ( A ^
j )  /  ( ! `  j )
) )  =  ( ( abs `  ( A ^ j ) )  /  ( abs `  ( ! `  j )
) ) )
251abscld 10981 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR )
2625recnd 7814 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  CC )
27 eqid 2140 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) )
2827eftvalcn 11391 . . . . . 6  |-  ( ( ( abs `  A
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) ) `  j )  =  ( ( ( abs `  A
) ^ j )  /  ( ! `  j ) ) )
2926, 28sylan 281 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) ) `
 j )  =  ( ( ( abs `  A ) ^ j
)  /  ( ! `
 j ) ) )
3019, 24, 293eqtr4rd 2184 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) ) `
 j )  =  ( abs `  (
( A ^ j
)  /  ( ! `
 j ) ) ) )
31 eftcl 11388 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( ( A ^
j )  /  ( ! `  j )
)  e.  CC )
321, 31sylan 281 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ j )  / 
( ! `  j
) )  e.  CC )
33 efadd.2 . . . . . 6  |-  G  =  ( n  e.  NN0  |->  ( ( B ^
n )  /  ( ! `  n )
) )
3433eftvalcn 11391 . . . . 5  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( G `  k
)  =  ( ( B ^ k )  /  ( ! `  k ) ) )
352, 34sylan 281 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  ( ( B ^ k
)  /  ( ! `
 k ) ) )
36 eftcl 11388 . . . . 5  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( ( B ^
k )  /  ( ! `  k )
)  e.  CC )
372, 36sylan 281 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( B ^ k )  / 
( ! `  k
) )  e.  CC )
384eftvalcn 11391 . . . . . 6  |-  ( ( ( A  +  B
)  e.  CC  /\  k  e.  NN0 )  -> 
( H `  k
)  =  ( ( ( A  +  B
) ^ k )  /  ( ! `  k ) ) )
393, 38sylan 281 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( ( ( A  +  B ) ^ k
)  /  ( ! `
 k ) ) )
401adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
412adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
42 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
43 binom 11281 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  k  e.  NN0 )  ->  (
( A  +  B
) ^ k )  =  sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
4440, 41, 42, 43syl3anc 1217 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  +  B ) ^ k )  = 
sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
4544oveq1d 5793 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  +  B
) ^ k )  /  ( ! `  k ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
46 0zd 9086 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  ZZ )
4742nn0zd 9191 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
4846, 47fzfigd 10231 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 0 ... k )  e. 
Fin )
49 faccl 10509 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
5049adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
5150nncnd 8754 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  CC )
52 bccl2 10542 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... k )  ->  (
k  _C  j )  e.  NN )
5352adantl 275 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  e.  NN )
5453nncnd 8754 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  e.  CC )
551ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  A  e.  CC )
56 fznn0sub 9864 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... k )  ->  (
k  -  j )  e.  NN0 )
5756adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  NN0 )
5855, 57expcld 10451 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ ( k  -  j ) )  e.  CC )
592ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  B  e.  CC )
60 elfznn0 9921 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... k )  ->  j  e.  NN0 )
6160adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  NN0 )
6259, 61expcld 10451 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( B ^ j )  e.  CC )
6358, 62mulcld 7806 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) )  e.  CC )
6454, 63mulcld 7806 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  e.  CC )
6550nnap0d 8786 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k ) #  0 )
6648, 51, 64, 65fsumdivapc 11247 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( k  _C  j )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
6755, 61expcld 10451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ j )  e.  CC )
6861, 12syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j )  e.  NN )
6968nncnd 8754 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j )  e.  CC )
7068nnap0d 8786 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j ) #  0 )
7167, 69, 70divclapd 8570 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ j
)  /  ( ! `
 j ) )  e.  CC )
7233eftvalcn 11391 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  ( k  -  j
)  e.  NN0 )  ->  ( G `  (
k  -  j ) )  =  ( ( B ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) ) )
7359, 57, 72syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  =  ( ( B ^ ( k  -  j ) )  / 
( ! `  (
k  -  j ) ) ) )
7459, 57expcld 10451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( B ^ ( k  -  j ) )  e.  CC )
75 faccl 10509 . . . . . . . . . . . . . 14  |-  ( ( k  -  j )  e.  NN0  ->  ( ! `
 ( k  -  j ) )  e.  NN )
7657, 75syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) )  e.  NN )
7776nncnd 8754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) )  e.  CC )
7876nnap0d 8786 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) ) #  0 )
7974, 77, 78divclapd 8570 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( B ^ (
k  -  j ) )  /  ( ! `
 ( k  -  j ) ) )  e.  CC )
8073, 79eqeltrd 2217 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  e.  CC )
8171, 80mulcld 7806 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) )  e.  CC )
82 oveq2 5786 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( A ^ j )  =  ( A ^ (
( 0  +  k )  -  m ) ) )
83 fveq2 5425 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( ! `  j )  =  ( ! `  ( ( 0  +  k )  -  m
) ) )
8482, 83oveq12d 5796 . . . . . . . . . 10  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
( A ^ j
)  /  ( ! `
 j ) )  =  ( ( A ^ ( ( 0  +  k )  -  m ) )  / 
( ! `  (
( 0  +  k )  -  m ) ) ) )
85 oveq2 5786 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
k  -  j )  =  ( k  -  ( ( 0  +  k )  -  m
) ) )
8685fveq2d 5429 . . . . . . . . . 10  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( G `  ( k  -  j ) )  =  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
8784, 86oveq12d 5796 . . . . . . . . 9  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  m ) )  /  ( ! `  ( ( 0  +  k )  -  m
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  m ) ) ) ) )
8846, 47, 81, 87fisumrev2 11243 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ j )  /  ( ! `  j ) )  x.  ( G `  (
k  -  j ) ) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) ) )
8933eftvalcn 11391 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  j  e.  NN0 )  -> 
( G `  j
)  =  ( ( B ^ j )  /  ( ! `  j ) ) )
9059, 61, 89syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  j )  =  ( ( B ^ j )  / 
( ! `  j
) ) )
9190oveq2d 5794 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( G `
 j ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( ( B ^
j )  /  ( ! `  j )
) ) )
9276, 68nnmulcld 8789 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) )  e.  NN )
9392nncnd 8754 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) )  e.  CC )
9477, 69, 78, 70mulap0d 8439 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) #  0 )
9563, 93, 94divrecap2d 8574 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  x.  ( B ^ j ) )  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  =  ( ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
9658, 77, 62, 69, 78, 70divmuldivapd 8612 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( ( B ^ j )  /  ( ! `  j ) ) )  =  ( ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
97 bcval2 10524 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... k )  ->  (
k  _C  j )  =  ( ( ! `
 k )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
9897adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  =  ( ( ! `
 k )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
9998oveq1d 5793 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  /  ( ! `
 k ) )  =  ( ( ( ! `  k )  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  / 
( ! `  k
) ) )
10051adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  k )  e.  CC )
10165adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  k ) #  0 )
102100, 93, 100, 94, 101divdiv32apd 8596 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) )  /  ( ! `
 k ) )  =  ( ( ( ! `  k )  /  ( ! `  k ) )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
103100, 101dividapd 8566 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  k
)  /  ( ! `
 k ) )  =  1 )
104103oveq1d 5793 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  ( ! `  k )
)  /  ( ( ! `  ( k  -  j ) )  x.  ( ! `  j ) ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
105102, 104eqtrd 2173 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) )  /  ( ! `
 k ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
10699, 105eqtrd 2173 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  /  ( ! `
 k ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
107106oveq1d 5793 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  /  ( ! `  k )
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  =  ( ( 1  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
10895, 96, 1073eqtr4rd 2184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  /  ( ! `  k )
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( ( B ^
j )  /  ( ! `  j )
) ) )
10991, 108eqtr4d 2176 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( G `
 j ) )  =  ( ( ( k  _C  j )  /  ( ! `  k ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
110 nn0cn 9007 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  CC )
111110ad2antlr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  CC )
112111addid2d 7932 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
0  +  k )  =  k )
113112oveq1d 5793 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( 0  +  k )  -  j )  =  ( k  -  j ) )
114113oveq2d 5794 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ ( ( 0  +  k )  -  j ) )  =  ( A ^ (
k  -  j ) ) )
115113fveq2d 5429 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( (
0  +  k )  -  j ) )  =  ( ! `  ( k  -  j
) ) )
116114, 115oveq12d 5796 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ (
( 0  +  k )  -  j ) )  /  ( ! `
 ( ( 0  +  k )  -  j ) ) )  =  ( ( A ^ ( k  -  j ) )  / 
( ! `  (
k  -  j ) ) ) )
117113oveq2d 5794 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  ( k  -  ( k  -  j
) ) )
118 nn0cn 9007 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  j  e.  CC )
11961, 118syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  CC )
120111, 119nncand 8098 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( k  -  j ) )  =  j )
121117, 120eqtrd 2173 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  j )
122121fveq2d 5429 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  ( ( 0  +  k )  -  j ) ) )  =  ( G `  j ) )
123116, 122oveq12d 5796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( G `  j
) ) )
12454, 63, 100, 101div23apd 8608 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) )  =  ( ( ( k  _C  j )  /  ( ! `  k ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
125109, 123, 1243eqtr4rd 2184 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  j ) )  /  ( ! `  ( ( 0  +  k )  -  j
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  j ) ) ) ) )
126125sumeq2dv 11165 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( k  _C  j )  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^ j
) ) )  / 
( ! `  k
) )  =  sum_ j  e.  ( 0 ... k ) ( ( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) ) )
127 oveq2 5786 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  (
( 0  +  k )  -  j )  =  ( ( 0  +  k )  -  m ) )
128127oveq2d 5794 . . . . . . . . . . . 12  |-  ( j  =  m  ->  ( A ^ ( ( 0  +  k )  -  j ) )  =  ( A ^ (
( 0  +  k )  -  m ) ) )
129127fveq2d 5429 . . . . . . . . . . . 12  |-  ( j  =  m  ->  ( ! `  ( (
0  +  k )  -  j ) )  =  ( ! `  ( ( 0  +  k )  -  m
) ) )
130128, 129oveq12d 5796 . . . . . . . . . . 11  |-  ( j  =  m  ->  (
( A ^ (
( 0  +  k )  -  j ) )  /  ( ! `
 ( ( 0  +  k )  -  j ) ) )  =  ( ( A ^ ( ( 0  +  k )  -  m ) )  / 
( ! `  (
( 0  +  k )  -  m ) ) ) )
131127oveq2d 5794 . . . . . . . . . . . 12  |-  ( j  =  m  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  ( k  -  ( ( 0  +  k )  -  m
) ) )
132131fveq2d 5429 . . . . . . . . . . 11  |-  ( j  =  m  ->  ( G `  ( k  -  ( ( 0  +  k )  -  j ) ) )  =  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
133130, 132oveq12d 5796 . . . . . . . . . 10  |-  ( j  =  m  ->  (
( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  m ) )  /  ( ! `  ( ( 0  +  k )  -  m
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  m ) ) ) ) )
134133cbvsumv 11158 . . . . . . . . 9  |-  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ ( ( 0  +  k )  -  j ) )  /  ( ! `  ( ( 0  +  k )  -  j
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  j ) ) ) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
135126, 134eqtrdi 2189 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( k  _C  j )  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^ j
) ) )  / 
( ! `  k
) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) ) )
13688, 135eqtr4d 2176 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ j )  /  ( ! `  j ) )  x.  ( G `  (
k  -  j ) ) )  =  sum_ j  e.  ( 0 ... k ) ( ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
13766, 136eqtr4d 2176 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( A ^ j )  / 
( ! `  j
) )  x.  ( G `  ( k  -  j ) ) ) )
13845, 137eqtrd 2173 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  +  B
) ^ k )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( A ^ j )  / 
( ! `  j
) )  x.  ( G `  ( k  -  j ) ) ) )
13939, 138eqtrd 2173 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( ( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) ) )
14027efcllem 11393 . . . . 5  |-  ( ( abs `  A )  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( ( abs `  A ) ^ n
)  /  ( ! `
 n ) ) ) )  e.  dom  ~~>  )
14126, 140syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
14233efcllem 11393 . . . . 5  |-  ( B  e.  CC  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
1432, 142syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
1447efcllem 11393 . . . . 5  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
1451, 144syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
1469, 30, 32, 35, 37, 139, 141, 143, 145mertensabs 11334 . . 3  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  ( ( A ^ j )  /  ( ! `  j ) )  x. 
sum_ k  e.  NN0  ( ( B ^
k )  /  ( ! `  k )
) ) )
147 efval 11395 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ j  e.  NN0  ( ( A ^
j )  /  ( ! `  j )
) )
1481, 147syl 14 . . . 4  |-  ( ph  ->  ( exp `  A
)  =  sum_ j  e.  NN0  ( ( A ^ j )  / 
( ! `  j
) ) )
149 efval 11395 . . . . 5  |-  ( B  e.  CC  ->  ( exp `  B )  = 
sum_ k  e.  NN0  ( ( B ^
k )  /  ( ! `  k )
) )
1502, 149syl 14 . . . 4  |-  ( ph  ->  ( exp `  B
)  =  sum_ k  e.  NN0  ( ( B ^ k )  / 
( ! `  k
) ) )
151148, 150oveq12d 5796 . . 3  |-  ( ph  ->  ( ( exp `  A
)  x.  ( exp `  B ) )  =  ( sum_ j  e.  NN0  ( ( A ^
j )  /  ( ! `  j )
)  x.  sum_ k  e.  NN0  ( ( B ^ k )  / 
( ! `  k
) ) ) )
152146, 151breqtrrd 3960 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( ( exp `  A )  x.  ( exp `  B
) ) )
153 climuni 11090 . 2  |-  ( (  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) )  /\  seq 0 (  +  ,  H )  ~~>  ( ( exp `  A )  x.  ( exp `  B
) ) )  -> 
( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
1546, 152, 153syl2anc 409 1  |-  ( ph  ->  ( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   class class class wbr 3933    |-> cmpt 3993   dom cdm 4543   ` cfv 5127  (class class class)co 5778   CCcc 7638   0cc0 7640   1c1 7641    + caddc 7643    x. cmul 7645    - cmin 7953   # cap 8363    / cdiv 8452   NNcn 8740   NN0cn0 8997   ...cfz 9817    seqcseq 10245   ^cexp 10319   !cfa 10499    _C cbc 10521   abscabs 10797    ~~> cli 11075   sum_csu 11150   expce 11376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759  ax-caucvg 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-disj 3911  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-isom 5136  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-irdg 6271  df-frec 6292  df-1o 6317  df-oadd 6321  df-er 6433  df-en 6639  df-dom 6640  df-fin 6641  df-sup 6875  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-n0 8998  df-z 9075  df-uz 9347  df-q 9435  df-rp 9467  df-ico 9703  df-fz 9818  df-fzo 9947  df-seqfrec 10246  df-exp 10320  df-fac 10500  df-bc 10522  df-ihash 10550  df-cj 10642  df-re 10643  df-im 10644  df-rsqrt 10798  df-abs 10799  df-clim 11076  df-sumdc 11151  df-ef 11382
This theorem is referenced by:  efadd  11409
  Copyright terms: Public domain W3C validator