ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efaddlem Unicode version

Theorem efaddlem 11027
Description: Lemma for efadd 11028 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efadd.2  |-  G  =  ( n  e.  NN0  |->  ( ( B ^
n )  /  ( ! `  n )
) )
efadd.3  |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^
n )  /  ( ! `  n )
) )
efadd.4  |-  ( ph  ->  A  e.  CC )
efadd.5  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
efaddlem  |-  ( ph  ->  ( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
Distinct variable groups:    A, n    B, n
Allowed substitution hints:    ph( n)    F( n)    G( n)    H( n)

Proof of Theorem efaddlem
Dummy variables  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4  |-  ( ph  ->  A  e.  CC )
2 efadd.5 . . . 4  |-  ( ph  ->  B  e.  CC )
31, 2addcld 7570 . . 3  |-  ( ph  ->  ( A  +  B
)  e.  CC )
4 efadd.3 . . . 4  |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^
n )  /  ( ! `  n )
) )
54efcvg 11019 . . 3  |-  ( ( A  +  B )  e.  CC  ->  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) ) )
63, 5syl 14 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) ) )
7 efadd.1 . . . . . 6  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
87eftvalcn 11010 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  ( ( A ^ j )  /  ( ! `  j ) ) )
91, 8sylan 278 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  ( ( A ^ j
)  /  ( ! `
 j ) ) )
10 absexp 10575 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )
111, 10sylan 278 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( A ^ j
) )  =  ( ( abs `  A
) ^ j ) )
12 faccl 10206 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( ! `
 j )  e.  NN )
1312adantl 272 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j )  e.  NN )
14 nnre 8492 . . . . . . . 8  |-  ( ( ! `  j )  e.  NN  ->  ( ! `  j )  e.  RR )
15 nnnn0 8743 . . . . . . . . 9  |-  ( ( ! `  j )  e.  NN  ->  ( ! `  j )  e.  NN0 )
1615nn0ge0d 8792 . . . . . . . 8  |-  ( ( ! `  j )  e.  NN  ->  0  <_  ( ! `  j
) )
1714, 16absidd 10663 . . . . . . 7  |-  ( ( ! `  j )  e.  NN  ->  ( abs `  ( ! `  j ) )  =  ( ! `  j
) )
1813, 17syl 14 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( ! `  j
) )  =  ( ! `  j ) )
1911, 18oveq12d 5686 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  ( A ^
j ) )  / 
( abs `  ( ! `  j )
) )  =  ( ( ( abs `  A
) ^ j )  /  ( ! `  j ) ) )
20 expcl 10036 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
211, 20sylan 278 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
2213nncnd 8499 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j )  e.  CC )
2313nnap0d 8531 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j ) #  0 )
2421, 22, 23absdivapd 10691 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( ( A ^
j )  /  ( ! `  j )
) )  =  ( ( abs `  ( A ^ j ) )  /  ( abs `  ( ! `  j )
) ) )
251abscld 10677 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR )
2625recnd 7579 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  CC )
27 eqid 2089 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) )
2827eftvalcn 11010 . . . . . 6  |-  ( ( ( abs `  A
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) ) `  j )  =  ( ( ( abs `  A
) ^ j )  /  ( ! `  j ) ) )
2926, 28sylan 278 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) ) `
 j )  =  ( ( ( abs `  A ) ^ j
)  /  ( ! `
 j ) ) )
3019, 24, 293eqtr4rd 2132 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) ) `
 j )  =  ( abs `  (
( A ^ j
)  /  ( ! `
 j ) ) ) )
31 eftcl 11007 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( ( A ^
j )  /  ( ! `  j )
)  e.  CC )
321, 31sylan 278 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ j )  / 
( ! `  j
) )  e.  CC )
33 efadd.2 . . . . . 6  |-  G  =  ( n  e.  NN0  |->  ( ( B ^
n )  /  ( ! `  n )
) )
3433eftvalcn 11010 . . . . 5  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( G `  k
)  =  ( ( B ^ k )  /  ( ! `  k ) ) )
352, 34sylan 278 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  ( ( B ^ k
)  /  ( ! `
 k ) ) )
36 eftcl 11007 . . . . 5  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( ( B ^
k )  /  ( ! `  k )
)  e.  CC )
372, 36sylan 278 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( B ^ k )  / 
( ! `  k
) )  e.  CC )
384eftvalcn 11010 . . . . . 6  |-  ( ( ( A  +  B
)  e.  CC  /\  k  e.  NN0 )  -> 
( H `  k
)  =  ( ( ( A  +  B
) ^ k )  /  ( ! `  k ) ) )
393, 38sylan 278 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( ( ( A  +  B ) ^ k
)  /  ( ! `
 k ) ) )
401adantr 271 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
412adantr 271 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
42 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
43 binom 10941 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  k  e.  NN0 )  ->  (
( A  +  B
) ^ k )  =  sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
4440, 41, 42, 43syl3anc 1175 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  +  B ) ^ k )  = 
sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
4544oveq1d 5683 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  +  B
) ^ k )  /  ( ! `  k ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
46 0zd 8825 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  ZZ )
4742nn0zd 8929 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
4846, 47fzfigd 9901 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 0 ... k )  e. 
Fin )
49 faccl 10206 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
5049adantl 272 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
5150nncnd 8499 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  CC )
52 bccl2 10239 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... k )  ->  (
k  _C  j )  e.  NN )
5352adantl 272 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  e.  NN )
5453nncnd 8499 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  e.  CC )
551ad2antrr 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  A  e.  CC )
56 fznn0sub 9534 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... k )  ->  (
k  -  j )  e.  NN0 )
5756adantl 272 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  NN0 )
5855, 57expcld 10149 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ ( k  -  j ) )  e.  CC )
592ad2antrr 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  B  e.  CC )
60 elfznn0 9591 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... k )  ->  j  e.  NN0 )
6160adantl 272 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  NN0 )
6259, 61expcld 10149 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( B ^ j )  e.  CC )
6358, 62mulcld 7571 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) )  e.  CC )
6454, 63mulcld 7571 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  e.  CC )
6550nnap0d 8531 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k ) #  0 )
6648, 51, 64, 65fsumdivapc 10907 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( k  _C  j )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
6755, 61expcld 10149 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ j )  e.  CC )
6861, 12syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j )  e.  NN )
6968nncnd 8499 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j )  e.  CC )
7068nnap0d 8531 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j ) #  0 )
7167, 69, 70divclapd 8320 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ j
)  /  ( ! `
 j ) )  e.  CC )
7233eftvalcn 11010 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  ( k  -  j
)  e.  NN0 )  ->  ( G `  (
k  -  j ) )  =  ( ( B ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) ) )
7359, 57, 72syl2anc 404 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  =  ( ( B ^ ( k  -  j ) )  / 
( ! `  (
k  -  j ) ) ) )
7459, 57expcld 10149 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( B ^ ( k  -  j ) )  e.  CC )
75 faccl 10206 . . . . . . . . . . . . . 14  |-  ( ( k  -  j )  e.  NN0  ->  ( ! `
 ( k  -  j ) )  e.  NN )
7657, 75syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) )  e.  NN )
7776nncnd 8499 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) )  e.  CC )
7876nnap0d 8531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) ) #  0 )
7974, 77, 78divclapd 8320 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( B ^ (
k  -  j ) )  /  ( ! `
 ( k  -  j ) ) )  e.  CC )
8073, 79eqeltrd 2165 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  e.  CC )
8171, 80mulcld 7571 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) )  e.  CC )
82 oveq2 5676 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( A ^ j )  =  ( A ^ (
( 0  +  k )  -  m ) ) )
83 fveq2 5320 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( ! `  j )  =  ( ! `  ( ( 0  +  k )  -  m
) ) )
8482, 83oveq12d 5686 . . . . . . . . . 10  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
( A ^ j
)  /  ( ! `
 j ) )  =  ( ( A ^ ( ( 0  +  k )  -  m ) )  / 
( ! `  (
( 0  +  k )  -  m ) ) ) )
85 oveq2 5676 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
k  -  j )  =  ( k  -  ( ( 0  +  k )  -  m
) ) )
8685fveq2d 5324 . . . . . . . . . 10  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( G `  ( k  -  j ) )  =  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
8784, 86oveq12d 5686 . . . . . . . . 9  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  m ) )  /  ( ! `  ( ( 0  +  k )  -  m
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  m ) ) ) ) )
8846, 47, 81, 87fisumrev2 10903 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ j )  /  ( ! `  j ) )  x.  ( G `  (
k  -  j ) ) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) ) )
8933eftvalcn 11010 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  j  e.  NN0 )  -> 
( G `  j
)  =  ( ( B ^ j )  /  ( ! `  j ) ) )
9059, 61, 89syl2anc 404 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  j )  =  ( ( B ^ j )  / 
( ! `  j
) ) )
9190oveq2d 5684 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( G `
 j ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( ( B ^
j )  /  ( ! `  j )
) ) )
9276, 68nnmulcld 8534 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) )  e.  NN )
9392nncnd 8499 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) )  e.  CC )
9477, 69, 78, 70mulap0d 8190 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) #  0 )
9563, 93, 94divrecap2d 8324 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  x.  ( B ^ j ) )  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  =  ( ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
9658, 77, 62, 69, 78, 70divmuldivapd 8362 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( ( B ^ j )  /  ( ! `  j ) ) )  =  ( ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
97 bcval2 10221 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... k )  ->  (
k  _C  j )  =  ( ( ! `
 k )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
9897adantl 272 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  =  ( ( ! `
 k )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
9998oveq1d 5683 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  /  ( ! `
 k ) )  =  ( ( ( ! `  k )  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  / 
( ! `  k
) ) )
10051adantr 271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  k )  e.  CC )
10165adantr 271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  k ) #  0 )
102100, 93, 100, 94, 101divdiv32apd 8346 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) )  /  ( ! `
 k ) )  =  ( ( ( ! `  k )  /  ( ! `  k ) )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
103100, 101dividapd 8316 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  k
)  /  ( ! `
 k ) )  =  1 )
104103oveq1d 5683 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  ( ! `  k )
)  /  ( ( ! `  ( k  -  j ) )  x.  ( ! `  j ) ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
105102, 104eqtrd 2121 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) )  /  ( ! `
 k ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
10699, 105eqtrd 2121 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  /  ( ! `
 k ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
107106oveq1d 5683 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  /  ( ! `  k )
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  =  ( ( 1  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
10895, 96, 1073eqtr4rd 2132 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  /  ( ! `  k )
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( ( B ^
j )  /  ( ! `  j )
) ) )
10991, 108eqtr4d 2124 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( G `
 j ) )  =  ( ( ( k  _C  j )  /  ( ! `  k ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
110 nn0cn 8746 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  CC )
111110ad2antlr 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  CC )
112111addid2d 7695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
0  +  k )  =  k )
113112oveq1d 5683 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( 0  +  k )  -  j )  =  ( k  -  j ) )
114113oveq2d 5684 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ ( ( 0  +  k )  -  j ) )  =  ( A ^ (
k  -  j ) ) )
115113fveq2d 5324 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( (
0  +  k )  -  j ) )  =  ( ! `  ( k  -  j
) ) )
116114, 115oveq12d 5686 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ (
( 0  +  k )  -  j ) )  /  ( ! `
 ( ( 0  +  k )  -  j ) ) )  =  ( ( A ^ ( k  -  j ) )  / 
( ! `  (
k  -  j ) ) ) )
117113oveq2d 5684 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  ( k  -  ( k  -  j
) ) )
118 nn0cn 8746 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  j  e.  CC )
11961, 118syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  CC )
120111, 119nncand 7861 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( k  -  j ) )  =  j )
121117, 120eqtrd 2121 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  j )
122121fveq2d 5324 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  ( ( 0  +  k )  -  j ) ) )  =  ( G `  j ) )
123116, 122oveq12d 5686 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( G `  j
) ) )
12454, 63, 100, 101div23apd 8358 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) )  =  ( ( ( k  _C  j )  /  ( ! `  k ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
125109, 123, 1243eqtr4rd 2132 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  j ) )  /  ( ! `  ( ( 0  +  k )  -  j
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  j ) ) ) ) )
126125sumeq2dv 10820 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( k  _C  j )  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^ j
) ) )  / 
( ! `  k
) )  =  sum_ j  e.  ( 0 ... k ) ( ( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) ) )
127 oveq2 5676 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  (
( 0  +  k )  -  j )  =  ( ( 0  +  k )  -  m ) )
128127oveq2d 5684 . . . . . . . . . . . 12  |-  ( j  =  m  ->  ( A ^ ( ( 0  +  k )  -  j ) )  =  ( A ^ (
( 0  +  k )  -  m ) ) )
129127fveq2d 5324 . . . . . . . . . . . 12  |-  ( j  =  m  ->  ( ! `  ( (
0  +  k )  -  j ) )  =  ( ! `  ( ( 0  +  k )  -  m
) ) )
130128, 129oveq12d 5686 . . . . . . . . . . 11  |-  ( j  =  m  ->  (
( A ^ (
( 0  +  k )  -  j ) )  /  ( ! `
 ( ( 0  +  k )  -  j ) ) )  =  ( ( A ^ ( ( 0  +  k )  -  m ) )  / 
( ! `  (
( 0  +  k )  -  m ) ) ) )
131127oveq2d 5684 . . . . . . . . . . . 12  |-  ( j  =  m  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  ( k  -  ( ( 0  +  k )  -  m
) ) )
132131fveq2d 5324 . . . . . . . . . . 11  |-  ( j  =  m  ->  ( G `  ( k  -  ( ( 0  +  k )  -  j ) ) )  =  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
133130, 132oveq12d 5686 . . . . . . . . . 10  |-  ( j  =  m  ->  (
( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  m ) )  /  ( ! `  ( ( 0  +  k )  -  m
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  m ) ) ) ) )
134133cbvsumv 10813 . . . . . . . . 9  |-  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ ( ( 0  +  k )  -  j ) )  /  ( ! `  ( ( 0  +  k )  -  j
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  j ) ) ) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
135126, 134syl6eq 2137 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( k  _C  j )  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^ j
) ) )  / 
( ! `  k
) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) ) )
13688, 135eqtr4d 2124 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ j )  /  ( ! `  j ) )  x.  ( G `  (
k  -  j ) ) )  =  sum_ j  e.  ( 0 ... k ) ( ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
13766, 136eqtr4d 2124 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( A ^ j )  / 
( ! `  j
) )  x.  ( G `  ( k  -  j ) ) ) )
13845, 137eqtrd 2121 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  +  B
) ^ k )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( A ^ j )  / 
( ! `  j
) )  x.  ( G `  ( k  -  j ) ) ) )
13939, 138eqtrd 2121 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( ( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) ) )
14027efcllem 11012 . . . . 5  |-  ( ( abs `  A )  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( ( abs `  A ) ^ n
)  /  ( ! `
 n ) ) ) )  e.  dom  ~~>  )
14126, 140syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
14233efcllem 11012 . . . . 5  |-  ( B  e.  CC  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
1432, 142syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
1447efcllem 11012 . . . . 5  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
1451, 144syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
1469, 30, 32, 35, 37, 139, 141, 143, 145mertensabs 10994 . . 3  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  ( ( A ^ j )  /  ( ! `  j ) )  x. 
sum_ k  e.  NN0  ( ( B ^
k )  /  ( ! `  k )
) ) )
147 efval 11014 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ j  e.  NN0  ( ( A ^
j )  /  ( ! `  j )
) )
1481, 147syl 14 . . . 4  |-  ( ph  ->  ( exp `  A
)  =  sum_ j  e.  NN0  ( ( A ^ j )  / 
( ! `  j
) ) )
149 efval 11014 . . . . 5  |-  ( B  e.  CC  ->  ( exp `  B )  = 
sum_ k  e.  NN0  ( ( B ^
k )  /  ( ! `  k )
) )
1502, 149syl 14 . . . 4  |-  ( ph  ->  ( exp `  B
)  =  sum_ k  e.  NN0  ( ( B ^ k )  / 
( ! `  k
) ) )
151148, 150oveq12d 5686 . . 3  |-  ( ph  ->  ( ( exp `  A
)  x.  ( exp `  B ) )  =  ( sum_ j  e.  NN0  ( ( A ^
j )  /  ( ! `  j )
)  x.  sum_ k  e.  NN0  ( ( B ^ k )  / 
( ! `  k
) ) ) )
152146, 151breqtrrd 3879 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( ( exp `  A )  x.  ( exp `  B
) ) )
153 climuni 10744 . 2  |-  ( (  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) )  /\  seq 0 (  +  ,  H )  ~~>  ( ( exp `  A )  x.  ( exp `  B
) ) )  -> 
( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
1546, 152, 153syl2anc 404 1  |-  ( ph  ->  ( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   class class class wbr 3853    |-> cmpt 3907   dom cdm 4454   ` cfv 5030  (class class class)co 5668   CCcc 7411   0cc0 7413   1c1 7414    + caddc 7416    x. cmul 7418    - cmin 7716   # cap 8121    / cdiv 8202   NNcn 8485   NN0cn0 8736   ...cfz 9487    seqcseq 9915   ^cexp 10017   !cfa 10196    _C cbc 10218   abscabs 10493    ~~> cli 10729   sum_csu 10805   expce 10995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525  ax-pre-mulext 7526  ax-arch 7527  ax-caucvg 7528
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-if 3400  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-disj 3831  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-ilim 4207  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-isom 5039  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-irdg 6151  df-frec 6172  df-1o 6197  df-oadd 6201  df-er 6308  df-en 6514  df-dom 6515  df-fin 6516  df-sup 6735  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122  df-div 8203  df-inn 8486  df-2 8544  df-3 8545  df-4 8546  df-n0 8737  df-z 8814  df-uz 9083  df-q 9168  df-rp 9198  df-ico 9375  df-fz 9488  df-fzo 9617  df-iseq 9916  df-seq3 9917  df-exp 10018  df-fac 10197  df-bc 10219  df-ihash 10247  df-cj 10339  df-re 10340  df-im 10341  df-rsqrt 10494  df-abs 10495  df-clim 10730  df-isum 10806  df-ef 11001
This theorem is referenced by:  efadd  11028
  Copyright terms: Public domain W3C validator