ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efaddlem Unicode version

Theorem efaddlem 11666
Description: Lemma for efadd 11667 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efadd.2  |-  G  =  ( n  e.  NN0  |->  ( ( B ^
n )  /  ( ! `  n )
) )
efadd.3  |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^
n )  /  ( ! `  n )
) )
efadd.4  |-  ( ph  ->  A  e.  CC )
efadd.5  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
efaddlem  |-  ( ph  ->  ( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
Distinct variable groups:    A, n    B, n
Allowed substitution hints:    ph( n)    F( n)    G( n)    H( n)

Proof of Theorem efaddlem
Dummy variables  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4  |-  ( ph  ->  A  e.  CC )
2 efadd.5 . . . 4  |-  ( ph  ->  B  e.  CC )
31, 2addcld 7967 . . 3  |-  ( ph  ->  ( A  +  B
)  e.  CC )
4 efadd.3 . . . 4  |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^
n )  /  ( ! `  n )
) )
54efcvg 11658 . . 3  |-  ( ( A  +  B )  e.  CC  ->  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) ) )
63, 5syl 14 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) ) )
7 efadd.1 . . . . . 6  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
87eftvalcn 11649 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  ( ( A ^ j )  /  ( ! `  j ) ) )
91, 8sylan 283 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  ( ( A ^ j
)  /  ( ! `
 j ) ) )
10 absexp 11072 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )
111, 10sylan 283 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( A ^ j
) )  =  ( ( abs `  A
) ^ j ) )
12 faccl 10699 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( ! `
 j )  e.  NN )
1312adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j )  e.  NN )
14 nnre 8915 . . . . . . . 8  |-  ( ( ! `  j )  e.  NN  ->  ( ! `  j )  e.  RR )
15 nnnn0 9172 . . . . . . . . 9  |-  ( ( ! `  j )  e.  NN  ->  ( ! `  j )  e.  NN0 )
1615nn0ge0d 9221 . . . . . . . 8  |-  ( ( ! `  j )  e.  NN  ->  0  <_  ( ! `  j
) )
1714, 16absidd 11160 . . . . . . 7  |-  ( ( ! `  j )  e.  NN  ->  ( abs `  ( ! `  j ) )  =  ( ! `  j
) )
1813, 17syl 14 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( ! `  j
) )  =  ( ! `  j ) )
1911, 18oveq12d 5887 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  ( A ^
j ) )  / 
( abs `  ( ! `  j )
) )  =  ( ( ( abs `  A
) ^ j )  /  ( ! `  j ) ) )
20 expcl 10524 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
211, 20sylan 283 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
2213nncnd 8922 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j )  e.  CC )
2313nnap0d 8954 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  j ) #  0 )
2421, 22, 23absdivapd 11188 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( ( A ^
j )  /  ( ! `  j )
) )  =  ( ( abs `  ( A ^ j ) )  /  ( abs `  ( ! `  j )
) ) )
251abscld 11174 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR )
2625recnd 7976 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  CC )
27 eqid 2177 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) )
2827eftvalcn 11649 . . . . . 6  |-  ( ( ( abs `  A
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) ) `  j )  =  ( ( ( abs `  A
) ^ j )  /  ( ! `  j ) ) )
2926, 28sylan 283 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) ) `
 j )  =  ( ( ( abs `  A ) ^ j
)  /  ( ! `
 j ) ) )
3019, 24, 293eqtr4rd 2221 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) ) `
 j )  =  ( abs `  (
( A ^ j
)  /  ( ! `
 j ) ) ) )
31 eftcl 11646 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( ( A ^
j )  /  ( ! `  j )
)  e.  CC )
321, 31sylan 283 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ j )  / 
( ! `  j
) )  e.  CC )
33 efadd.2 . . . . . 6  |-  G  =  ( n  e.  NN0  |->  ( ( B ^
n )  /  ( ! `  n )
) )
3433eftvalcn 11649 . . . . 5  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( G `  k
)  =  ( ( B ^ k )  /  ( ! `  k ) ) )
352, 34sylan 283 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  ( ( B ^ k
)  /  ( ! `
 k ) ) )
36 eftcl 11646 . . . . 5  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( ( B ^
k )  /  ( ! `  k )
)  e.  CC )
372, 36sylan 283 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( B ^ k )  / 
( ! `  k
) )  e.  CC )
384eftvalcn 11649 . . . . . 6  |-  ( ( ( A  +  B
)  e.  CC  /\  k  e.  NN0 )  -> 
( H `  k
)  =  ( ( ( A  +  B
) ^ k )  /  ( ! `  k ) ) )
393, 38sylan 283 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( ( ( A  +  B ) ^ k
)  /  ( ! `
 k ) ) )
401adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
412adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
42 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
43 binom 11476 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  k  e.  NN0 )  ->  (
( A  +  B
) ^ k )  =  sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
4440, 41, 42, 43syl3anc 1238 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  +  B ) ^ k )  = 
sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
4544oveq1d 5884 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  +  B
) ^ k )  /  ( ! `  k ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
46 0zd 9254 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  ZZ )
4742nn0zd 9362 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
4846, 47fzfigd 10417 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 0 ... k )  e. 
Fin )
49 faccl 10699 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
5049adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
5150nncnd 8922 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  CC )
52 bccl2 10732 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... k )  ->  (
k  _C  j )  e.  NN )
5352adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  e.  NN )
5453nncnd 8922 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  e.  CC )
551ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  A  e.  CC )
56 fznn0sub 10043 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... k )  ->  (
k  -  j )  e.  NN0 )
5756adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  NN0 )
5855, 57expcld 10639 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ ( k  -  j ) )  e.  CC )
592ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  B  e.  CC )
60 elfznn0 10100 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... k )  ->  j  e.  NN0 )
6160adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  NN0 )
6259, 61expcld 10639 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( B ^ j )  e.  CC )
6358, 62mulcld 7968 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) )  e.  CC )
6454, 63mulcld 7968 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  e.  CC )
6550nnap0d 8954 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k ) #  0 )
6648, 51, 64, 65fsumdivapc 11442 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( k  _C  j )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
6755, 61expcld 10639 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ j )  e.  CC )
6861, 12syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j )  e.  NN )
6968nncnd 8922 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j )  e.  CC )
7068nnap0d 8954 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  j ) #  0 )
7167, 69, 70divclapd 8736 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ j
)  /  ( ! `
 j ) )  e.  CC )
7233eftvalcn 11649 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  ( k  -  j
)  e.  NN0 )  ->  ( G `  (
k  -  j ) )  =  ( ( B ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) ) )
7359, 57, 72syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  =  ( ( B ^ ( k  -  j ) )  / 
( ! `  (
k  -  j ) ) ) )
7459, 57expcld 10639 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( B ^ ( k  -  j ) )  e.  CC )
75 faccl 10699 . . . . . . . . . . . . . 14  |-  ( ( k  -  j )  e.  NN0  ->  ( ! `
 ( k  -  j ) )  e.  NN )
7657, 75syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) )  e.  NN )
7776nncnd 8922 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) )  e.  CC )
7876nnap0d 8954 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( k  -  j ) ) #  0 )
7974, 77, 78divclapd 8736 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( B ^ (
k  -  j ) )  /  ( ! `
 ( k  -  j ) ) )  e.  CC )
8073, 79eqeltrd 2254 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  e.  CC )
8171, 80mulcld 7968 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) )  e.  CC )
82 oveq2 5877 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( A ^ j )  =  ( A ^ (
( 0  +  k )  -  m ) ) )
83 fveq2 5511 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( ! `  j )  =  ( ! `  ( ( 0  +  k )  -  m
) ) )
8482, 83oveq12d 5887 . . . . . . . . . 10  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
( A ^ j
)  /  ( ! `
 j ) )  =  ( ( A ^ ( ( 0  +  k )  -  m ) )  / 
( ! `  (
( 0  +  k )  -  m ) ) ) )
85 oveq2 5877 . . . . . . . . . . 11  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
k  -  j )  =  ( k  -  ( ( 0  +  k )  -  m
) ) )
8685fveq2d 5515 . . . . . . . . . 10  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  ( G `  ( k  -  j ) )  =  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
8784, 86oveq12d 5887 . . . . . . . . 9  |-  ( j  =  ( ( 0  +  k )  -  m )  ->  (
( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  m ) )  /  ( ! `  ( ( 0  +  k )  -  m
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  m ) ) ) ) )
8846, 47, 81, 87fisumrev2 11438 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ j )  /  ( ! `  j ) )  x.  ( G `  (
k  -  j ) ) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) ) )
8933eftvalcn 11649 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  j  e.  NN0 )  -> 
( G `  j
)  =  ( ( B ^ j )  /  ( ! `  j ) ) )
9059, 61, 89syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  j )  =  ( ( B ^ j )  / 
( ! `  j
) ) )
9190oveq2d 5885 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( G `
 j ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( ( B ^
j )  /  ( ! `  j )
) ) )
9276, 68nnmulcld 8957 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) )  e.  NN )
9392nncnd 8922 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) )  e.  CC )
9477, 69, 78, 70mulap0d 8604 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) #  0 )
9563, 93, 94divrecap2d 8740 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  x.  ( B ^ j ) )  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  =  ( ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) ) )
9658, 77, 62, 69, 78, 70divmuldivapd 8778 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( ( B ^ j )  /  ( ! `  j ) ) )  =  ( ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
97 bcval2 10714 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... k )  ->  (
k  _C  j )  =  ( ( ! `
 k )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
9897adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  _C  j )  =  ( ( ! `
 k )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
9998oveq1d 5884 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  /  ( ! `
 k ) )  =  ( ( ( ! `  k )  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  / 
( ! `  k
) ) )
10051adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  k )  e.  CC )
10165adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  k ) #  0 )
102100, 93, 100, 94, 101divdiv32apd 8762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) )  /  ( ! `
 k ) )  =  ( ( ( ! `  k )  /  ( ! `  k ) )  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
103100, 101dividapd 8732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ! `  k
)  /  ( ! `
 k ) )  =  1 )
104103oveq1d 5884 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  ( ! `  k )
)  /  ( ( ! `  ( k  -  j ) )  x.  ( ! `  j ) ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
105102, 104eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( ! `  k )  /  (
( ! `  (
k  -  j ) )  x.  ( ! `
 j ) ) )  /  ( ! `
 k ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
10699, 105eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( k  _C  j
)  /  ( ! `
 k ) )  =  ( 1  / 
( ( ! `  ( k  -  j
) )  x.  ( ! `  j )
) ) )
107106oveq1d 5884 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  /  ( ! `  k )
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  =  ( ( 1  /  ( ( ! `
 ( k  -  j ) )  x.  ( ! `  j
) ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
10895, 96, 1073eqtr4rd 2221 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  /  ( ! `  k )
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( ( B ^
j )  /  ( ! `  j )
) ) )
10991, 108eqtr4d 2213 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( k  -  j
) )  /  ( ! `  ( k  -  j ) ) )  x.  ( G `
 j ) )  =  ( ( ( k  _C  j )  /  ( ! `  k ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
110 nn0cn 9175 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  CC )
111110ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  CC )
112111addid2d 8097 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
0  +  k )  =  k )
113112oveq1d 5884 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( 0  +  k )  -  j )  =  ( k  -  j ) )
114113oveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A ^ ( ( 0  +  k )  -  j ) )  =  ( A ^ (
k  -  j ) ) )
115113fveq2d 5515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( ! `  ( (
0  +  k )  -  j ) )  =  ( ! `  ( k  -  j
) ) )
116114, 115oveq12d 5887 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( A ^ (
( 0  +  k )  -  j ) )  /  ( ! `
 ( ( 0  +  k )  -  j ) ) )  =  ( ( A ^ ( k  -  j ) )  / 
( ! `  (
k  -  j ) ) ) )
117113oveq2d 5885 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  ( k  -  ( k  -  j
) ) )
118 nn0cn 9175 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  j  e.  CC )
11961, 118syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  CC )
120111, 119nncand 8263 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( k  -  j ) )  =  j )
121117, 120eqtrd 2210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  j )
122121fveq2d 5515 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  ( ( 0  +  k )  -  j ) ) )  =  ( G `  j ) )
123116, 122oveq12d 5887 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) )  =  ( ( ( A ^ ( k  -  j ) )  /  ( ! `  ( k  -  j
) ) )  x.  ( G `  j
) ) )
12454, 63, 100, 101div23apd 8774 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) )  =  ( ( ( k  _C  j )  /  ( ! `  k ) )  x.  ( ( A ^
( k  -  j
) )  x.  ( B ^ j ) ) ) )
125109, 123, 1243eqtr4rd 2221 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  j ) )  /  ( ! `  ( ( 0  +  k )  -  j
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  j ) ) ) ) )
126125sumeq2dv 11360 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( k  _C  j )  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^ j
) ) )  / 
( ! `  k
) )  =  sum_ j  e.  ( 0 ... k ) ( ( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) ) )
127 oveq2 5877 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  (
( 0  +  k )  -  j )  =  ( ( 0  +  k )  -  m ) )
128127oveq2d 5885 . . . . . . . . . . . 12  |-  ( j  =  m  ->  ( A ^ ( ( 0  +  k )  -  j ) )  =  ( A ^ (
( 0  +  k )  -  m ) ) )
129127fveq2d 5515 . . . . . . . . . . . 12  |-  ( j  =  m  ->  ( ! `  ( (
0  +  k )  -  j ) )  =  ( ! `  ( ( 0  +  k )  -  m
) ) )
130128, 129oveq12d 5887 . . . . . . . . . . 11  |-  ( j  =  m  ->  (
( A ^ (
( 0  +  k )  -  j ) )  /  ( ! `
 ( ( 0  +  k )  -  j ) ) )  =  ( ( A ^ ( ( 0  +  k )  -  m ) )  / 
( ! `  (
( 0  +  k )  -  m ) ) ) )
131127oveq2d 5885 . . . . . . . . . . . 12  |-  ( j  =  m  ->  (
k  -  ( ( 0  +  k )  -  j ) )  =  ( k  -  ( ( 0  +  k )  -  m
) ) )
132131fveq2d 5515 . . . . . . . . . . 11  |-  ( j  =  m  ->  ( G `  ( k  -  ( ( 0  +  k )  -  j ) ) )  =  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
133130, 132oveq12d 5887 . . . . . . . . . 10  |-  ( j  =  m  ->  (
( ( A ^
( ( 0  +  k )  -  j
) )  /  ( ! `  ( (
0  +  k )  -  j ) ) )  x.  ( G `
 ( k  -  ( ( 0  +  k )  -  j
) ) ) )  =  ( ( ( A ^ ( ( 0  +  k )  -  m ) )  /  ( ! `  ( ( 0  +  k )  -  m
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  m ) ) ) ) )
134133cbvsumv 11353 . . . . . . . . 9  |-  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ ( ( 0  +  k )  -  j ) )  /  ( ! `  ( ( 0  +  k )  -  j
) ) )  x.  ( G `  (
k  -  ( ( 0  +  k )  -  j ) ) ) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) )
135126, 134eqtrdi 2226 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( k  _C  j )  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^ j
) ) )  / 
( ! `  k
) )  =  sum_ m  e.  ( 0 ... k ) ( ( ( A ^ (
( 0  +  k )  -  m ) )  /  ( ! `
 ( ( 0  +  k )  -  m ) ) )  x.  ( G `  ( k  -  (
( 0  +  k )  -  m ) ) ) ) )
13688, 135eqtr4d 2213 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( ( ( A ^ j )  /  ( ! `  j ) )  x.  ( G `  (
k  -  j ) ) )  =  sum_ j  e.  ( 0 ... k ) ( ( ( k  _C  j )  x.  (
( A ^ (
k  -  j ) )  x.  ( B ^ j ) ) )  /  ( ! `
 k ) ) )
13766, 136eqtr4d 2213 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... k ) ( ( k  _C  j
)  x.  ( ( A ^ ( k  -  j ) )  x.  ( B ^
j ) ) )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( A ^ j )  / 
( ! `  j
) )  x.  ( G `  ( k  -  j ) ) ) )
13845, 137eqtrd 2210 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A  +  B
) ^ k )  /  ( ! `  k ) )  = 
sum_ j  e.  ( 0 ... k ) ( ( ( A ^ j )  / 
( ! `  j
) )  x.  ( G `  ( k  -  j ) ) ) )
13939, 138eqtrd 2210 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( ( ( A ^
j )  /  ( ! `  j )
)  x.  ( G `
 ( k  -  j ) ) ) )
14027efcllem 11651 . . . . 5  |-  ( ( abs `  A )  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( ( abs `  A ) ^ n
)  /  ( ! `
 n ) ) ) )  e.  dom  ~~>  )
14126, 140syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( abs `  A ) ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
14233efcllem 11651 . . . . 5  |-  ( B  e.  CC  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
1432, 142syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
1447efcllem 11651 . . . . 5  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
1451, 144syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
1469, 30, 32, 35, 37, 139, 141, 143, 145mertensabs 11529 . . 3  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  ( ( A ^ j )  /  ( ! `  j ) )  x. 
sum_ k  e.  NN0  ( ( B ^
k )  /  ( ! `  k )
) ) )
147 efval 11653 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ j  e.  NN0  ( ( A ^
j )  /  ( ! `  j )
) )
1481, 147syl 14 . . . 4  |-  ( ph  ->  ( exp `  A
)  =  sum_ j  e.  NN0  ( ( A ^ j )  / 
( ! `  j
) ) )
149 efval 11653 . . . . 5  |-  ( B  e.  CC  ->  ( exp `  B )  = 
sum_ k  e.  NN0  ( ( B ^
k )  /  ( ! `  k )
) )
1502, 149syl 14 . . . 4  |-  ( ph  ->  ( exp `  B
)  =  sum_ k  e.  NN0  ( ( B ^ k )  / 
( ! `  k
) ) )
151148, 150oveq12d 5887 . . 3  |-  ( ph  ->  ( ( exp `  A
)  x.  ( exp `  B ) )  =  ( sum_ j  e.  NN0  ( ( A ^
j )  /  ( ! `  j )
)  x.  sum_ k  e.  NN0  ( ( B ^ k )  / 
( ! `  k
) ) ) )
152146, 151breqtrrd 4028 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( ( exp `  A )  x.  ( exp `  B
) ) )
153 climuni 11285 . 2  |-  ( (  seq 0 (  +  ,  H )  ~~>  ( exp `  ( A  +  B
) )  /\  seq 0 (  +  ,  H )  ~~>  ( ( exp `  A )  x.  ( exp `  B
) ) )  -> 
( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
1546, 152, 153syl2anc 411 1  |-  ( ph  ->  ( exp `  ( A  +  B )
)  =  ( ( exp `  A )  x.  ( exp `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4000    |-> cmpt 4061   dom cdm 4623   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    - cmin 8118   # cap 8528    / cdiv 8618   NNcn 8908   NN0cn0 9165   ...cfz 9995    seqcseq 10431   ^cexp 10505   !cfa 10689    _C cbc 10711   abscabs 10990    ~~> cli 11270   sum_csu 11345   expce 11634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640
This theorem is referenced by:  efadd  11667
  Copyright terms: Public domain W3C validator