ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddci2 Unicode version

Theorem decaddci2 9383
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decaddi.1  |-  A  e. 
NN0
decaddi.2  |-  B  e. 
NN0
decaddi.3  |-  N  e. 
NN0
decaddi.4  |-  M  = ; A B
decaddci.5  |-  ( A  +  1 )  =  D
decaddci2.6  |-  ( B  +  N )  = ; 1
0
Assertion
Ref Expression
decaddci2  |-  ( M  +  N )  = ; D
0

Proof of Theorem decaddci2
StepHypRef Expression
1 decaddi.1 . 2  |-  A  e. 
NN0
2 decaddi.2 . 2  |-  B  e. 
NN0
3 decaddi.3 . 2  |-  N  e. 
NN0
4 decaddi.4 . 2  |-  M  = ; A B
5 decaddci.5 . 2  |-  ( A  +  1 )  =  D
6 0nn0 9129 . 2  |-  0  e.  NN0
7 decaddci2.6 . 2  |-  ( B  +  N )  = ; 1
0
81, 2, 3, 4, 5, 6, 7decaddci 9382 1  |-  ( M  +  N )  = ; D
0
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756   NN0cn0 9114  ;cdc 9322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-dec 9323
This theorem is referenced by:  5t4e20  9423  6t5e30  9428  8t5e40  9439
  Copyright terms: Public domain W3C validator