![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decaddci2 | Unicode version |
Description: Add two numerals ![]() ![]() |
Ref | Expression |
---|---|
decaddi.1 |
![]() ![]() ![]() ![]() |
decaddi.2 |
![]() ![]() ![]() ![]() |
decaddi.3 |
![]() ![]() ![]() ![]() |
decaddi.4 |
![]() ![]() ![]() ![]() ![]() |
decaddci.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
decaddci2.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
decaddci2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | decaddi.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | decaddi.3 |
. 2
![]() ![]() ![]() ![]() | |
4 | decaddi.4 |
. 2
![]() ![]() ![]() ![]() ![]() | |
5 | decaddci.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 0nn0 9258 |
. 2
![]() ![]() ![]() ![]() | |
7 | decaddci2.6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 2, 3, 4, 5, 6, 7 | decaddci 9511 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-dec 9452 |
This theorem is referenced by: 5t4e20 9552 6t5e30 9557 8t5e40 9568 |
Copyright terms: Public domain | W3C validator |