ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsubi Unicode version

Theorem decsubi 9448
Description: Difference between a numeral  M and a nonnegative integer  N (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decaddi.1  |-  A  e. 
NN0
decaddi.2  |-  B  e. 
NN0
decaddi.3  |-  N  e. 
NN0
decaddi.4  |-  M  = ; A B
decaddci.5  |-  ( A  +  1 )  =  D
decsubi.5  |-  ( B  -  N )  =  C
Assertion
Ref Expression
decsubi  |-  ( M  -  N )  = ; A C

Proof of Theorem decsubi
StepHypRef Expression
1 10nn0 9403 . . . . 5  |- ; 1 0  e.  NN0
2 decaddi.1 . . . . 5  |-  A  e. 
NN0
31, 2nn0mulcli 9216 . . . 4  |-  (; 1 0  x.  A
)  e.  NN0
43nn0cni 9190 . . 3  |-  (; 1 0  x.  A
)  e.  CC
5 decaddi.2 . . . 4  |-  B  e. 
NN0
65nn0cni 9190 . . 3  |-  B  e.  CC
7 decaddi.3 . . . 4  |-  N  e. 
NN0
87nn0cni 9190 . . 3  |-  N  e.  CC
94, 6, 8addsubassi 8250 . 2  |-  ( ( (; 1 0  x.  A
)  +  B )  -  N )  =  ( (; 1 0  x.  A
)  +  ( B  -  N ) )
10 decaddi.4 . . . 4  |-  M  = ; A B
11 dfdec10 9389 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
1210, 11eqtri 2198 . . 3  |-  M  =  ( (; 1 0  x.  A
)  +  B )
1312oveq1i 5887 . 2  |-  ( M  -  N )  =  ( ( (; 1 0  x.  A
)  +  B )  -  N )
14 dfdec10 9389 . . 3  |- ; A C  =  ( (; 1 0  x.  A
)  +  C )
15 decsubi.5 . . . . 5  |-  ( B  -  N )  =  C
1615eqcomi 2181 . . . 4  |-  C  =  ( B  -  N
)
1716oveq2i 5888 . . 3  |-  ( (; 1
0  x.  A )  +  C )  =  ( (; 1 0  x.  A
)  +  ( B  -  N ) )
1814, 17eqtri 2198 . 2  |- ; A C  =  ( (; 1 0  x.  A
)  +  ( B  -  N ) )
199, 13, 183eqtr4i 2208 1  |-  ( M  -  N )  = ; A C
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148  (class class class)co 5877   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    - cmin 8130   NN0cn0 9178  ;cdc 9386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-dec 9387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator