ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsubi Unicode version

Theorem decsubi 9636
Description: Difference between a numeral  M and a nonnegative integer  N (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decaddi.1  |-  A  e. 
NN0
decaddi.2  |-  B  e. 
NN0
decaddi.3  |-  N  e. 
NN0
decaddi.4  |-  M  = ; A B
decaddci.5  |-  ( A  +  1 )  =  D
decsubi.5  |-  ( B  -  N )  =  C
Assertion
Ref Expression
decsubi  |-  ( M  -  N )  = ; A C

Proof of Theorem decsubi
StepHypRef Expression
1 10nn0 9591 . . . . 5  |- ; 1 0  e.  NN0
2 decaddi.1 . . . . 5  |-  A  e. 
NN0
31, 2nn0mulcli 9403 . . . 4  |-  (; 1 0  x.  A
)  e.  NN0
43nn0cni 9377 . . 3  |-  (; 1 0  x.  A
)  e.  CC
5 decaddi.2 . . . 4  |-  B  e. 
NN0
65nn0cni 9377 . . 3  |-  B  e.  CC
7 decaddi.3 . . . 4  |-  N  e. 
NN0
87nn0cni 9377 . . 3  |-  N  e.  CC
94, 6, 8addsubassi 8433 . 2  |-  ( ( (; 1 0  x.  A
)  +  B )  -  N )  =  ( (; 1 0  x.  A
)  +  ( B  -  N ) )
10 decaddi.4 . . . 4  |-  M  = ; A B
11 dfdec10 9577 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
1210, 11eqtri 2250 . . 3  |-  M  =  ( (; 1 0  x.  A
)  +  B )
1312oveq1i 6010 . 2  |-  ( M  -  N )  =  ( ( (; 1 0  x.  A
)  +  B )  -  N )
14 dfdec10 9577 . . 3  |- ; A C  =  ( (; 1 0  x.  A
)  +  C )
15 decsubi.5 . . . . 5  |-  ( B  -  N )  =  C
1615eqcomi 2233 . . . 4  |-  C  =  ( B  -  N
)
1716oveq2i 6011 . . 3  |-  ( (; 1
0  x.  A )  +  C )  =  ( (; 1 0  x.  A
)  +  ( B  -  N ) )
1814, 17eqtri 2250 . 2  |- ; A C  =  ( (; 1 0  x.  A
)  +  ( B  -  N ) )
199, 13, 183eqtr4i 2260 1  |-  ( M  -  N )  = ; A C
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    - cmin 8313   NN0cn0 9365  ;cdc 9574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-dec 9575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator