ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmul2c Unicode version

Theorem decmul2c 9582
Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul1.p  |-  P  e. 
NN0
decmul1.a  |-  A  e. 
NN0
decmul1.b  |-  B  e. 
NN0
decmul1.n  |-  N  = ; A B
decmul1.0  |-  D  e. 
NN0
decmul1c.e  |-  E  e. 
NN0
decmul2c.c  |-  ( ( P  x.  A )  +  E )  =  C
decmul2c.2  |-  ( P  x.  B )  = ; E D
Assertion
Ref Expression
decmul2c  |-  ( P  x.  N )  = ; C D

Proof of Theorem decmul2c
StepHypRef Expression
1 10nn0 9534 . . 3  |- ; 1 0  e.  NN0
2 decmul1.p . . 3  |-  P  e. 
NN0
3 decmul1.a . . 3  |-  A  e. 
NN0
4 decmul1.b . . 3  |-  B  e. 
NN0
5 decmul1.n . . . 4  |-  N  = ; A B
6 dfdec10 9520 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
75, 6eqtri 2227 . . 3  |-  N  =  ( (; 1 0  x.  A
)  +  B )
8 decmul1.0 . . 3  |-  D  e. 
NN0
9 decmul1c.e . . 3  |-  E  e. 
NN0
10 decmul2c.c . . 3  |-  ( ( P  x.  A )  +  E )  =  C
11 decmul2c.2 . . . 4  |-  ( P  x.  B )  = ; E D
12 dfdec10 9520 . . . 4  |- ; E D  =  ( (; 1 0  x.  E
)  +  D )
1311, 12eqtri 2227 . . 3  |-  ( P  x.  B )  =  ( (; 1 0  x.  E
)  +  D )
141, 2, 3, 4, 7, 8, 9, 10, 13nummul2c 9566 . 2  |-  ( P  x.  N )  =  ( (; 1 0  x.  C
)  +  D )
15 dfdec10 9520 . 2  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
1614, 15eqtr4i 2230 1  |-  ( P  x.  N )  = ; C D
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177  (class class class)co 5954   0cc0 7938   1c1 7939    + caddc 7941    x. cmul 7943   NN0cn0 9308  ;cdc 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518
This theorem is referenced by:  decmulnc  9583  2exp8  12808  2exp16  12810
  Copyright terms: Public domain W3C validator