| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decmul2c | GIF version | ||
| Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
| decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
| decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
| decmul1c.e | ⊢ 𝐸 ∈ ℕ0 |
| decmul2c.c | ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 |
| decmul2c.2 | ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 |
| Ref | Expression |
|---|---|
| decmul2c | ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9603 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 6 | dfdec10 9589 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 7 | 5, 6 | eqtri 2250 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
| 8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 9 | decmul1c.e | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 10 | decmul2c.c | . . 3 ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 | |
| 11 | decmul2c.2 | . . . 4 ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 | |
| 12 | dfdec10 9589 | . . . 4 ⊢ ;𝐸𝐷 = ((;10 · 𝐸) + 𝐷) | |
| 13 | 11, 12 | eqtri 2250 | . . 3 ⊢ (𝑃 · 𝐵) = ((;10 · 𝐸) + 𝐷) |
| 14 | 1, 2, 3, 4, 7, 8, 9, 10, 13 | nummul2c 9635 | . 2 ⊢ (𝑃 · 𝑁) = ((;10 · 𝐶) + 𝐷) |
| 15 | dfdec10 9589 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 16 | 14, 15 | eqtr4i 2253 | 1 ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 ℕ0cn0 9377 ;cdc 9586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 |
| This theorem is referenced by: decmulnc 9652 2exp8 12966 2exp16 12968 |
| Copyright terms: Public domain | W3C validator |