ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfval Unicode version

Theorem divsfval 13204
Description: Value of the function in qusval 13199. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
Assertion
Ref Expression
divsfval  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A   
x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem divsfval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ercpbl.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
21mptrcl 5669 . . . 4  |-  ( y  e.  ( F `  A )  ->  A  e.  V )
32a1i 9 . . 3  |-  ( ph  ->  ( y  e.  ( F `  A )  ->  A  e.  V
) )
4 19.8a 1614 . . . 4  |-  ( y  e.  [ A ]  .~  ->  E. y  y  e. 
[ A ]  .~  )
5 ecdmn0m 6671 . . . . . 6  |-  ( A  e.  dom  .~  <->  E. y 
y  e.  [ A ]  .~  )
65biimpri 133 . . . . 5  |-  ( E. y  y  e.  [ A ]  .~  ->  A  e.  dom  .~  )
7 ercpbl.r . . . . . . 7  |-  ( ph  ->  .~  Er  V )
8 erdm 6637 . . . . . . 7  |-  (  .~  Er  V  ->  dom  .~  =  V )
97, 8syl 14 . . . . . 6  |-  ( ph  ->  dom  .~  =  V )
109eleq2d 2276 . . . . 5  |-  ( ph  ->  ( A  e.  dom  .~  <->  A  e.  V ) )
116, 10imbitrid 154 . . . 4  |-  ( ph  ->  ( E. y  y  e.  [ A ]  .~  ->  A  e.  V
) )
124, 11syl5 32 . . 3  |-  ( ph  ->  ( y  e.  [ A ]  .~  ->  A  e.  V ) )
13 eceq1 6662 . . . . . 6  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
14 simpr 110 . . . . . 6  |-  ( (
ph  /\  A  e.  V )  ->  A  e.  V )
15 ercpbl.v . . . . . . . 8  |-  ( ph  ->  V  e.  W )
167ecss 6670 . . . . . . . 8  |-  ( ph  ->  [ A ]  .~  C_  V )
1715, 16ssexd 4188 . . . . . . 7  |-  ( ph  ->  [ A ]  .~  e.  _V )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  A  e.  V )  ->  [ A ]  .~  e.  _V )
191, 13, 14, 18fvmptd3 5680 . . . . 5  |-  ( (
ph  /\  A  e.  V )  ->  ( F `  A )  =  [ A ]  .~  )
2019eleq2d 2276 . . . 4  |-  ( (
ph  /\  A  e.  V )  ->  (
y  e.  ( F `
 A )  <->  y  e.  [ A ]  .~  )
)
2120ex 115 . . 3  |-  ( ph  ->  ( A  e.  V  ->  ( y  e.  ( F `  A )  <-> 
y  e.  [ A ]  .~  ) ) )
223, 12, 21pm5.21ndd 707 . 2  |-  ( ph  ->  ( y  e.  ( F `  A )  <-> 
y  e.  [ A ]  .~  ) )
2322eqrdv 2204 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773    |-> cmpt 4109   dom cdm 4679   ` cfv 5276    Er wer 6624   [cec 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fv 5284  df-er 6627  df-ec 6629
This theorem is referenced by:  qusrhm  14334
  Copyright terms: Public domain W3C validator