ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfval Unicode version

Theorem divsfval 13347
Description: Value of the function in qusval 13342. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
Assertion
Ref Expression
divsfval  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A   
x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem divsfval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ercpbl.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
21mptrcl 5710 . . . 4  |-  ( y  e.  ( F `  A )  ->  A  e.  V )
32a1i 9 . . 3  |-  ( ph  ->  ( y  e.  ( F `  A )  ->  A  e.  V
) )
4 19.8a 1636 . . . 4  |-  ( y  e.  [ A ]  .~  ->  E. y  y  e. 
[ A ]  .~  )
5 ecdmn0m 6714 . . . . . 6  |-  ( A  e.  dom  .~  <->  E. y 
y  e.  [ A ]  .~  )
65biimpri 133 . . . . 5  |-  ( E. y  y  e.  [ A ]  .~  ->  A  e.  dom  .~  )
7 ercpbl.r . . . . . . 7  |-  ( ph  ->  .~  Er  V )
8 erdm 6680 . . . . . . 7  |-  (  .~  Er  V  ->  dom  .~  =  V )
97, 8syl 14 . . . . . 6  |-  ( ph  ->  dom  .~  =  V )
109eleq2d 2299 . . . . 5  |-  ( ph  ->  ( A  e.  dom  .~  <->  A  e.  V ) )
116, 10imbitrid 154 . . . 4  |-  ( ph  ->  ( E. y  y  e.  [ A ]  .~  ->  A  e.  V
) )
124, 11syl5 32 . . 3  |-  ( ph  ->  ( y  e.  [ A ]  .~  ->  A  e.  V ) )
13 eceq1 6705 . . . . . 6  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
14 simpr 110 . . . . . 6  |-  ( (
ph  /\  A  e.  V )  ->  A  e.  V )
15 ercpbl.v . . . . . . . 8  |-  ( ph  ->  V  e.  W )
167ecss 6713 . . . . . . . 8  |-  ( ph  ->  [ A ]  .~  C_  V )
1715, 16ssexd 4223 . . . . . . 7  |-  ( ph  ->  [ A ]  .~  e.  _V )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  A  e.  V )  ->  [ A ]  .~  e.  _V )
191, 13, 14, 18fvmptd3 5721 . . . . 5  |-  ( (
ph  /\  A  e.  V )  ->  ( F `  A )  =  [ A ]  .~  )
2019eleq2d 2299 . . . 4  |-  ( (
ph  /\  A  e.  V )  ->  (
y  e.  ( F `
 A )  <->  y  e.  [ A ]  .~  )
)
2120ex 115 . . 3  |-  ( ph  ->  ( A  e.  V  ->  ( y  e.  ( F `  A )  <-> 
y  e.  [ A ]  .~  ) ) )
223, 12, 21pm5.21ndd 710 . 2  |-  ( ph  ->  ( y  e.  ( F `  A )  <-> 
y  e.  [ A ]  .~  ) )
2322eqrdv 2227 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799    |-> cmpt 4144   dom cdm 4716   ` cfv 5314    Er wer 6667   [cec 6668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fv 5322  df-er 6670  df-ec 6672
This theorem is referenced by:  qusrhm  14477
  Copyright terms: Public domain W3C validator