| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divsfval | Unicode version | ||
| Description: Value of the function in qusval 13342. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r |
|
| ercpbl.v |
|
| ercpbl.f |
|
| Ref | Expression |
|---|---|
| divsfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.f |
. . . . 5
| |
| 2 | 1 | mptrcl 5710 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | 19.8a 1636 |
. . . 4
| |
| 5 | ecdmn0m 6714 |
. . . . . 6
| |
| 6 | 5 | biimpri 133 |
. . . . 5
|
| 7 | ercpbl.r |
. . . . . . 7
| |
| 8 | erdm 6680 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | 9 | eleq2d 2299 |
. . . . 5
|
| 11 | 6, 10 | imbitrid 154 |
. . . 4
|
| 12 | 4, 11 | syl5 32 |
. . 3
|
| 13 | eceq1 6705 |
. . . . . 6
| |
| 14 | simpr 110 |
. . . . . 6
| |
| 15 | ercpbl.v |
. . . . . . . 8
| |
| 16 | 7 | ecss 6713 |
. . . . . . . 8
|
| 17 | 15, 16 | ssexd 4223 |
. . . . . . 7
|
| 18 | 17 | adantr 276 |
. . . . . 6
|
| 19 | 1, 13, 14, 18 | fvmptd3 5721 |
. . . . 5
|
| 20 | 19 | eleq2d 2299 |
. . . 4
|
| 21 | 20 | ex 115 |
. . 3
|
| 22 | 3, 12, 21 | pm5.21ndd 710 |
. 2
|
| 23 | 22 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fv 5322 df-er 6670 df-ec 6672 |
| This theorem is referenced by: qusrhm 14477 |
| Copyright terms: Public domain | W3C validator |