ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfval Unicode version

Theorem divsfval 12911
Description: Value of the function in qusval 12906. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
Assertion
Ref Expression
divsfval  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Distinct variable groups:    x,  .~    x, A   
x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem divsfval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ercpbl.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
21mptrcl 5640 . . . 4  |-  ( y  e.  ( F `  A )  ->  A  e.  V )
32a1i 9 . . 3  |-  ( ph  ->  ( y  e.  ( F `  A )  ->  A  e.  V
) )
4 19.8a 1601 . . . 4  |-  ( y  e.  [ A ]  .~  ->  E. y  y  e. 
[ A ]  .~  )
5 ecdmn0m 6631 . . . . . 6  |-  ( A  e.  dom  .~  <->  E. y 
y  e.  [ A ]  .~  )
65biimpri 133 . . . . 5  |-  ( E. y  y  e.  [ A ]  .~  ->  A  e.  dom  .~  )
7 ercpbl.r . . . . . . 7  |-  ( ph  ->  .~  Er  V )
8 erdm 6597 . . . . . . 7  |-  (  .~  Er  V  ->  dom  .~  =  V )
97, 8syl 14 . . . . . 6  |-  ( ph  ->  dom  .~  =  V )
109eleq2d 2263 . . . . 5  |-  ( ph  ->  ( A  e.  dom  .~  <->  A  e.  V ) )
116, 10imbitrid 154 . . . 4  |-  ( ph  ->  ( E. y  y  e.  [ A ]  .~  ->  A  e.  V
) )
124, 11syl5 32 . . 3  |-  ( ph  ->  ( y  e.  [ A ]  .~  ->  A  e.  V ) )
13 eceq1 6622 . . . . . 6  |-  ( x  =  A  ->  [ x ]  .~  =  [ A ]  .~  )
14 simpr 110 . . . . . 6  |-  ( (
ph  /\  A  e.  V )  ->  A  e.  V )
15 ercpbl.v . . . . . . . 8  |-  ( ph  ->  V  e.  W )
167ecss 6630 . . . . . . . 8  |-  ( ph  ->  [ A ]  .~  C_  V )
1715, 16ssexd 4169 . . . . . . 7  |-  ( ph  ->  [ A ]  .~  e.  _V )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  A  e.  V )  ->  [ A ]  .~  e.  _V )
191, 13, 14, 18fvmptd3 5651 . . . . 5  |-  ( (
ph  /\  A  e.  V )  ->  ( F `  A )  =  [ A ]  .~  )
2019eleq2d 2263 . . . 4  |-  ( (
ph  /\  A  e.  V )  ->  (
y  e.  ( F `
 A )  <->  y  e.  [ A ]  .~  )
)
2120ex 115 . . 3  |-  ( ph  ->  ( A  e.  V  ->  ( y  e.  ( F `  A )  <-> 
y  e.  [ A ]  .~  ) ) )
223, 12, 21pm5.21ndd 706 . 2  |-  ( ph  ->  ( y  e.  ( F `  A )  <-> 
y  e.  [ A ]  .~  ) )
2322eqrdv 2191 1  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760    |-> cmpt 4090   dom cdm 4659   ` cfv 5254    Er wer 6584   [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fv 5262  df-er 6587  df-ec 6589
This theorem is referenced by:  qusrhm  14024
  Copyright terms: Public domain W3C validator