| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divsfval | Unicode version | ||
| Description: Value of the function in qusval 13199. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r |
|
| ercpbl.v |
|
| ercpbl.f |
|
| Ref | Expression |
|---|---|
| divsfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.f |
. . . . 5
| |
| 2 | 1 | mptrcl 5669 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | 19.8a 1614 |
. . . 4
| |
| 5 | ecdmn0m 6671 |
. . . . . 6
| |
| 6 | 5 | biimpri 133 |
. . . . 5
|
| 7 | ercpbl.r |
. . . . . . 7
| |
| 8 | erdm 6637 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | 9 | eleq2d 2276 |
. . . . 5
|
| 11 | 6, 10 | imbitrid 154 |
. . . 4
|
| 12 | 4, 11 | syl5 32 |
. . 3
|
| 13 | eceq1 6662 |
. . . . . 6
| |
| 14 | simpr 110 |
. . . . . 6
| |
| 15 | ercpbl.v |
. . . . . . . 8
| |
| 16 | 7 | ecss 6670 |
. . . . . . . 8
|
| 17 | 15, 16 | ssexd 4188 |
. . . . . . 7
|
| 18 | 17 | adantr 276 |
. . . . . 6
|
| 19 | 1, 13, 14, 18 | fvmptd3 5680 |
. . . . 5
|
| 20 | 19 | eleq2d 2276 |
. . . 4
|
| 21 | 20 | ex 115 |
. . 3
|
| 22 | 3, 12, 21 | pm5.21ndd 707 |
. 2
|
| 23 | 22 | eqrdv 2204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fv 5284 df-er 6627 df-ec 6629 |
| This theorem is referenced by: qusrhm 14334 |
| Copyright terms: Public domain | W3C validator |