![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divsfval | GIF version |
Description: Value of the function in qusval 12909. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
Ref | Expression |
---|---|
divsfval | ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ercpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
2 | 1 | mptrcl 5641 | . . . 4 ⊢ (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉) |
3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉)) |
4 | 19.8a 1601 | . . . 4 ⊢ (𝑦 ∈ [𝐴] ∼ → ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
5 | ecdmn0m 6633 | . . . . . 6 ⊢ (𝐴 ∈ dom ∼ ↔ ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
6 | 5 | biimpri 133 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ dom ∼ ) |
7 | ercpbl.r | . . . . . . 7 ⊢ (𝜑 → ∼ Er 𝑉) | |
8 | erdm 6599 | . . . . . . 7 ⊢ ( ∼ Er 𝑉 → dom ∼ = 𝑉) | |
9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom ∼ = 𝑉) |
10 | 9 | eleq2d 2263 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ dom ∼ ↔ 𝐴 ∈ 𝑉)) |
11 | 6, 10 | imbitrid 154 | . . . 4 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
12 | 4, 11 | syl5 32 | . . 3 ⊢ (𝜑 → (𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
13 | eceq1 6624 | . . . . . 6 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
14 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
15 | ercpbl.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
16 | 7 | ecss 6632 | . . . . . . . 8 ⊢ (𝜑 → [𝐴] ∼ ⊆ 𝑉) |
17 | 15, 16 | ssexd 4170 | . . . . . . 7 ⊢ (𝜑 → [𝐴] ∼ ∈ V) |
18 | 17 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴] ∼ ∈ V) |
19 | 1, 13, 14, 18 | fvmptd3 5652 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) = [𝐴] ∼ ) |
20 | 19 | eleq2d 2263 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ ))) |
22 | 3, 12, 21 | pm5.21ndd 706 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
23 | 22 | eqrdv 2191 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4091 dom cdm 4660 ‘cfv 5255 Er wer 6586 [cec 6587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fv 5263 df-er 6589 df-ec 6591 |
This theorem is referenced by: qusrhm 14027 |
Copyright terms: Public domain | W3C validator |