| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divsfval | GIF version | ||
| Description: Value of the function in qusval 13270. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| Ref | Expression |
|---|---|
| divsfval | ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 2 | 1 | mptrcl 5685 | . . . 4 ⊢ (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉) |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉)) |
| 4 | 19.8a 1614 | . . . 4 ⊢ (𝑦 ∈ [𝐴] ∼ → ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
| 5 | ecdmn0m 6687 | . . . . . 6 ⊢ (𝐴 ∈ dom ∼ ↔ ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
| 6 | 5 | biimpri 133 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ dom ∼ ) |
| 7 | ercpbl.r | . . . . . . 7 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 8 | erdm 6653 | . . . . . . 7 ⊢ ( ∼ Er 𝑉 → dom ∼ = 𝑉) | |
| 9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom ∼ = 𝑉) |
| 10 | 9 | eleq2d 2277 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ dom ∼ ↔ 𝐴 ∈ 𝑉)) |
| 11 | 6, 10 | imbitrid 154 | . . . 4 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
| 12 | 4, 11 | syl5 32 | . . 3 ⊢ (𝜑 → (𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
| 13 | eceq1 6678 | . . . . . 6 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 14 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 15 | ercpbl.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 16 | 7 | ecss 6686 | . . . . . . . 8 ⊢ (𝜑 → [𝐴] ∼ ⊆ 𝑉) |
| 17 | 15, 16 | ssexd 4200 | . . . . . . 7 ⊢ (𝜑 → [𝐴] ∼ ∈ V) |
| 18 | 17 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴] ∼ ∈ V) |
| 19 | 1, 13, 14, 18 | fvmptd3 5696 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) = [𝐴] ∼ ) |
| 20 | 19 | eleq2d 2277 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
| 21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ ))) |
| 22 | 3, 12, 21 | pm5.21ndd 707 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
| 23 | 22 | eqrdv 2205 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 ↦ cmpt 4121 dom cdm 4693 ‘cfv 5290 Er wer 6640 [cec 6641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fv 5298 df-er 6643 df-ec 6645 |
| This theorem is referenced by: qusrhm 14405 |
| Copyright terms: Public domain | W3C validator |