ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfval GIF version

Theorem divsfval 12911
Description: Value of the function in qusval 12906. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
Assertion
Ref Expression
divsfval (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ercpbl.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
21mptrcl 5640 . . . 4 (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉)
32a1i 9 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉))
4 19.8a 1601 . . . 4 (𝑦 ∈ [𝐴] → ∃𝑦 𝑦 ∈ [𝐴] )
5 ecdmn0m 6631 . . . . . 6 (𝐴 ∈ dom ↔ ∃𝑦 𝑦 ∈ [𝐴] )
65biimpri 133 . . . . 5 (∃𝑦 𝑦 ∈ [𝐴] 𝐴 ∈ dom )
7 ercpbl.r . . . . . . 7 (𝜑 Er 𝑉)
8 erdm 6597 . . . . . . 7 ( Er 𝑉 → dom = 𝑉)
97, 8syl 14 . . . . . 6 (𝜑 → dom = 𝑉)
109eleq2d 2263 . . . . 5 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
116, 10imbitrid 154 . . . 4 (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] 𝐴𝑉))
124, 11syl5 32 . . 3 (𝜑 → (𝑦 ∈ [𝐴] 𝐴𝑉))
13 eceq1 6622 . . . . . 6 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
14 simpr 110 . . . . . 6 ((𝜑𝐴𝑉) → 𝐴𝑉)
15 ercpbl.v . . . . . . . 8 (𝜑𝑉𝑊)
167ecss 6630 . . . . . . . 8 (𝜑 → [𝐴] 𝑉)
1715, 16ssexd 4169 . . . . . . 7 (𝜑 → [𝐴] ∈ V)
1817adantr 276 . . . . . 6 ((𝜑𝐴𝑉) → [𝐴] ∈ V)
191, 13, 14, 18fvmptd3 5651 . . . . 5 ((𝜑𝐴𝑉) → (𝐹𝐴) = [𝐴] )
2019eleq2d 2263 . . . 4 ((𝜑𝐴𝑉) → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2120ex 115 . . 3 (𝜑 → (𝐴𝑉 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] )))
223, 12, 21pm5.21ndd 706 . 2 (𝜑 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2322eqrdv 2191 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cmpt 4090  dom cdm 4659  cfv 5254   Er wer 6584  [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fv 5262  df-er 6587  df-ec 6589
This theorem is referenced by:  qusrhm  14024
  Copyright terms: Public domain W3C validator