ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfval GIF version

Theorem divsfval 13275
Description: Value of the function in qusval 13270. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
Assertion
Ref Expression
divsfval (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ercpbl.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
21mptrcl 5685 . . . 4 (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉)
32a1i 9 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉))
4 19.8a 1614 . . . 4 (𝑦 ∈ [𝐴] → ∃𝑦 𝑦 ∈ [𝐴] )
5 ecdmn0m 6687 . . . . . 6 (𝐴 ∈ dom ↔ ∃𝑦 𝑦 ∈ [𝐴] )
65biimpri 133 . . . . 5 (∃𝑦 𝑦 ∈ [𝐴] 𝐴 ∈ dom )
7 ercpbl.r . . . . . . 7 (𝜑 Er 𝑉)
8 erdm 6653 . . . . . . 7 ( Er 𝑉 → dom = 𝑉)
97, 8syl 14 . . . . . 6 (𝜑 → dom = 𝑉)
109eleq2d 2277 . . . . 5 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
116, 10imbitrid 154 . . . 4 (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] 𝐴𝑉))
124, 11syl5 32 . . 3 (𝜑 → (𝑦 ∈ [𝐴] 𝐴𝑉))
13 eceq1 6678 . . . . . 6 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
14 simpr 110 . . . . . 6 ((𝜑𝐴𝑉) → 𝐴𝑉)
15 ercpbl.v . . . . . . . 8 (𝜑𝑉𝑊)
167ecss 6686 . . . . . . . 8 (𝜑 → [𝐴] 𝑉)
1715, 16ssexd 4200 . . . . . . 7 (𝜑 → [𝐴] ∈ V)
1817adantr 276 . . . . . 6 ((𝜑𝐴𝑉) → [𝐴] ∈ V)
191, 13, 14, 18fvmptd3 5696 . . . . 5 ((𝜑𝐴𝑉) → (𝐹𝐴) = [𝐴] )
2019eleq2d 2277 . . . 4 ((𝜑𝐴𝑉) → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2120ex 115 . . 3 (𝜑 → (𝐴𝑉 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] )))
223, 12, 21pm5.21ndd 707 . 2 (𝜑 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2322eqrdv 2205 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2178  Vcvv 2776  cmpt 4121  dom cdm 4693  cfv 5290   Er wer 6640  [cec 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fv 5298  df-er 6643  df-ec 6645
This theorem is referenced by:  qusrhm  14405
  Copyright terms: Public domain W3C validator