ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfval GIF version

Theorem divsfval 13361
Description: Value of the function in qusval 13356. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
Assertion
Ref Expression
divsfval (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ercpbl.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
21mptrcl 5717 . . . 4 (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉)
32a1i 9 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉))
4 19.8a 1636 . . . 4 (𝑦 ∈ [𝐴] → ∃𝑦 𝑦 ∈ [𝐴] )
5 ecdmn0m 6724 . . . . . 6 (𝐴 ∈ dom ↔ ∃𝑦 𝑦 ∈ [𝐴] )
65biimpri 133 . . . . 5 (∃𝑦 𝑦 ∈ [𝐴] 𝐴 ∈ dom )
7 ercpbl.r . . . . . . 7 (𝜑 Er 𝑉)
8 erdm 6690 . . . . . . 7 ( Er 𝑉 → dom = 𝑉)
97, 8syl 14 . . . . . 6 (𝜑 → dom = 𝑉)
109eleq2d 2299 . . . . 5 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
116, 10imbitrid 154 . . . 4 (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] 𝐴𝑉))
124, 11syl5 32 . . 3 (𝜑 → (𝑦 ∈ [𝐴] 𝐴𝑉))
13 eceq1 6715 . . . . . 6 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
14 simpr 110 . . . . . 6 ((𝜑𝐴𝑉) → 𝐴𝑉)
15 ercpbl.v . . . . . . . 8 (𝜑𝑉𝑊)
167ecss 6723 . . . . . . . 8 (𝜑 → [𝐴] 𝑉)
1715, 16ssexd 4224 . . . . . . 7 (𝜑 → [𝐴] ∈ V)
1817adantr 276 . . . . . 6 ((𝜑𝐴𝑉) → [𝐴] ∈ V)
191, 13, 14, 18fvmptd3 5728 . . . . 5 ((𝜑𝐴𝑉) → (𝐹𝐴) = [𝐴] )
2019eleq2d 2299 . . . 4 ((𝜑𝐴𝑉) → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2120ex 115 . . 3 (𝜑 → (𝐴𝑉 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] )))
223, 12, 21pm5.21ndd 710 . 2 (𝜑 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2322eqrdv 2227 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  cmpt 4145  dom cdm 4719  cfv 5318   Er wer 6677  [cec 6678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326  df-er 6680  df-ec 6682
This theorem is referenced by:  qusrhm  14492
  Copyright terms: Public domain W3C validator