| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divsfval | GIF version | ||
| Description: Value of the function in qusval 13356. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| Ref | Expression |
|---|---|
| divsfval | ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 2 | 1 | mptrcl 5717 | . . . 4 ⊢ (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉) |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉)) |
| 4 | 19.8a 1636 | . . . 4 ⊢ (𝑦 ∈ [𝐴] ∼ → ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
| 5 | ecdmn0m 6724 | . . . . . 6 ⊢ (𝐴 ∈ dom ∼ ↔ ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
| 6 | 5 | biimpri 133 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ dom ∼ ) |
| 7 | ercpbl.r | . . . . . . 7 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 8 | erdm 6690 | . . . . . . 7 ⊢ ( ∼ Er 𝑉 → dom ∼ = 𝑉) | |
| 9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom ∼ = 𝑉) |
| 10 | 9 | eleq2d 2299 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ dom ∼ ↔ 𝐴 ∈ 𝑉)) |
| 11 | 6, 10 | imbitrid 154 | . . . 4 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
| 12 | 4, 11 | syl5 32 | . . 3 ⊢ (𝜑 → (𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
| 13 | eceq1 6715 | . . . . . 6 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 14 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 15 | ercpbl.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 16 | 7 | ecss 6723 | . . . . . . . 8 ⊢ (𝜑 → [𝐴] ∼ ⊆ 𝑉) |
| 17 | 15, 16 | ssexd 4224 | . . . . . . 7 ⊢ (𝜑 → [𝐴] ∼ ∈ V) |
| 18 | 17 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴] ∼ ∈ V) |
| 19 | 1, 13, 14, 18 | fvmptd3 5728 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) = [𝐴] ∼ ) |
| 20 | 19 | eleq2d 2299 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
| 21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ ))) |
| 22 | 3, 12, 21 | pm5.21ndd 710 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
| 23 | 22 | eqrdv 2227 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4145 dom cdm 4719 ‘cfv 5318 Er wer 6677 [cec 6678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 df-er 6680 df-ec 6682 |
| This theorem is referenced by: qusrhm 14492 |
| Copyright terms: Public domain | W3C validator |