ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfval GIF version

Theorem divsfval 13160
Description: Value of the function in qusval 13155. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
Assertion
Ref Expression
divsfval (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ercpbl.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
21mptrcl 5662 . . . 4 (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉)
32a1i 9 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝐴) → 𝐴𝑉))
4 19.8a 1613 . . . 4 (𝑦 ∈ [𝐴] → ∃𝑦 𝑦 ∈ [𝐴] )
5 ecdmn0m 6664 . . . . . 6 (𝐴 ∈ dom ↔ ∃𝑦 𝑦 ∈ [𝐴] )
65biimpri 133 . . . . 5 (∃𝑦 𝑦 ∈ [𝐴] 𝐴 ∈ dom )
7 ercpbl.r . . . . . . 7 (𝜑 Er 𝑉)
8 erdm 6630 . . . . . . 7 ( Er 𝑉 → dom = 𝑉)
97, 8syl 14 . . . . . 6 (𝜑 → dom = 𝑉)
109eleq2d 2275 . . . . 5 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
116, 10imbitrid 154 . . . 4 (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] 𝐴𝑉))
124, 11syl5 32 . . 3 (𝜑 → (𝑦 ∈ [𝐴] 𝐴𝑉))
13 eceq1 6655 . . . . . 6 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
14 simpr 110 . . . . . 6 ((𝜑𝐴𝑉) → 𝐴𝑉)
15 ercpbl.v . . . . . . . 8 (𝜑𝑉𝑊)
167ecss 6663 . . . . . . . 8 (𝜑 → [𝐴] 𝑉)
1715, 16ssexd 4184 . . . . . . 7 (𝜑 → [𝐴] ∈ V)
1817adantr 276 . . . . . 6 ((𝜑𝐴𝑉) → [𝐴] ∈ V)
191, 13, 14, 18fvmptd3 5673 . . . . 5 ((𝜑𝐴𝑉) → (𝐹𝐴) = [𝐴] )
2019eleq2d 2275 . . . 4 ((𝜑𝐴𝑉) → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2120ex 115 . . 3 (𝜑 → (𝐴𝑉 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] )))
223, 12, 21pm5.21ndd 707 . 2 (𝜑 → (𝑦 ∈ (𝐹𝐴) ↔ 𝑦 ∈ [𝐴] ))
2322eqrdv 2203 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176  Vcvv 2772  cmpt 4105  dom cdm 4675  cfv 5271   Er wer 6617  [cec 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fv 5279  df-er 6620  df-ec 6622
This theorem is referenced by:  qusrhm  14290
  Copyright terms: Public domain W3C validator