| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divsfval | GIF version | ||
| Description: Value of the function in qusval 12966. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| Ref | Expression |
|---|---|
| divsfval | ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 2 | 1 | mptrcl 5644 | . . . 4 ⊢ (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉) |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) → 𝐴 ∈ 𝑉)) |
| 4 | 19.8a 1604 | . . . 4 ⊢ (𝑦 ∈ [𝐴] ∼ → ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
| 5 | ecdmn0m 6636 | . . . . . 6 ⊢ (𝐴 ∈ dom ∼ ↔ ∃𝑦 𝑦 ∈ [𝐴] ∼ ) | |
| 6 | 5 | biimpri 133 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ dom ∼ ) |
| 7 | ercpbl.r | . . . . . . 7 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 8 | erdm 6602 | . . . . . . 7 ⊢ ( ∼ Er 𝑉 → dom ∼ = 𝑉) | |
| 9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom ∼ = 𝑉) |
| 10 | 9 | eleq2d 2266 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ dom ∼ ↔ 𝐴 ∈ 𝑉)) |
| 11 | 6, 10 | imbitrid 154 | . . . 4 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
| 12 | 4, 11 | syl5 32 | . . 3 ⊢ (𝜑 → (𝑦 ∈ [𝐴] ∼ → 𝐴 ∈ 𝑉)) |
| 13 | eceq1 6627 | . . . . . 6 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 14 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 15 | ercpbl.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 16 | 7 | ecss 6635 | . . . . . . . 8 ⊢ (𝜑 → [𝐴] ∼ ⊆ 𝑉) |
| 17 | 15, 16 | ssexd 4173 | . . . . . . 7 ⊢ (𝜑 → [𝐴] ∼ ∈ V) |
| 18 | 17 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴] ∼ ∈ V) |
| 19 | 1, 13, 14, 18 | fvmptd3 5655 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) = [𝐴] ∼ ) |
| 20 | 19 | eleq2d 2266 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
| 21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ ))) |
| 22 | 3, 12, 21 | pm5.21ndd 706 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝐴) ↔ 𝑦 ∈ [𝐴] ∼ )) |
| 23 | 22 | eqrdv 2194 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 dom cdm 4663 ‘cfv 5258 Er wer 6589 [cec 6590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fv 5266 df-er 6592 df-ec 6594 |
| This theorem is referenced by: qusrhm 14084 |
| Copyright terms: Public domain | W3C validator |