ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2nd Unicode version

Theorem xp2nd 6167
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp2nd  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )

Proof of Theorem xp2nd
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4644 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. b E. c ( A  = 
<. b ,  c >.  /\  ( b  e.  B  /\  c  e.  C
) ) )
2 vex 2741 . . . . . . 7  |-  b  e. 
_V
3 vex 2741 . . . . . . 7  |-  c  e. 
_V
42, 3op2ndd 6150 . . . . . 6  |-  ( A  =  <. b ,  c
>.  ->  ( 2nd `  A
)  =  c )
54eleq1d 2246 . . . . 5  |-  ( A  =  <. b ,  c
>.  ->  ( ( 2nd `  A )  e.  C  <->  c  e.  C ) )
65biimpar 297 . . . 4  |-  ( ( A  =  <. b ,  c >.  /\  c  e.  C )  ->  ( 2nd `  A )  e.  C )
76adantrl 478 . . 3  |-  ( ( A  =  <. b ,  c >.  /\  (
b  e.  B  /\  c  e.  C )
)  ->  ( 2nd `  A )  e.  C
)
87exlimivv 1896 . 2  |-  ( E. b E. c ( A  =  <. b ,  c >.  /\  (
b  e.  B  /\  c  e.  C )
)  ->  ( 2nd `  A )  e.  C
)
91, 8sylbi 121 1  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   <.cop 3596    X. cxp 4625   ` cfv 5217   2ndc2nd 6140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fv 5225  df-2nd 6142
This theorem is referenced by:  xpf1o  6844  xpmapenlem  6849  djuf1olem  7052  exmidapne  7259  cc2lem  7265  dfplpq2  7353  dfmpq2  7354  enqbreq2  7356  enqdc1  7361  mulpipq2  7370  preqlu  7471  elnp1st2nd  7475  cauappcvgprlemladd  7657  elreal2  7829  cnref1o  9650  frecuzrdgrrn  10408  frec2uzrdg  10409  frecuzrdgrcl  10410  frecuzrdgtcl  10412  frecuzrdgsuc  10414  frecuzrdgrclt  10415  frecuzrdgg  10416  frecuzrdgdomlem  10417  frecuzrdgfunlem  10419  frecuzrdgsuctlem  10423  seq3val  10458  seqvalcd  10459  fisumcom2  11446  fprodcom2fi  11634  eucalgval  12054  eucalginv  12056  eucalglt  12057  eucalgcvga  12058  eucalg  12059  sqpweven  12175  2sqpwodd  12176  ctiunctlemudc  12438  xpsff1o  12768  tx1cn  13772  txdis  13780  txhmeo  13822  xmetxp  14010  xmetxpbl  14011  xmettxlem  14012  xmettx  14013
  Copyright terms: Public domain W3C validator