| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp2nd | Unicode version | ||
| Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| xp2nd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4700 |
. 2
| |
| 2 | vex 2776 |
. . . . . . 7
| |
| 3 | vex 2776 |
. . . . . . 7
| |
| 4 | 2, 3 | op2ndd 6248 |
. . . . . 6
|
| 5 | 4 | eleq1d 2275 |
. . . . 5
|
| 6 | 5 | biimpar 297 |
. . . 4
|
| 7 | 6 | adantrl 478 |
. . 3
|
| 8 | 7 | exlimivv 1921 |
. 2
|
| 9 | 1, 8 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fv 5288 df-2nd 6240 |
| This theorem is referenced by: xpf1o 6956 xpmapenlem 6961 opabfi 7050 djuf1olem 7170 exmidapne 7392 cc2lem 7398 dfplpq2 7487 dfmpq2 7488 enqbreq2 7490 enqdc1 7495 mulpipq2 7504 preqlu 7605 elnp1st2nd 7609 cauappcvgprlemladd 7791 elreal2 7963 cnref1o 9792 frecuzrdgrrn 10575 frec2uzrdg 10576 frecuzrdgrcl 10577 frecuzrdgtcl 10579 frecuzrdgsuc 10581 frecuzrdgrclt 10582 frecuzrdgg 10583 frecuzrdgdomlem 10584 frecuzrdgfunlem 10586 frecuzrdgsuctlem 10590 seq3val 10627 seqvalcd 10628 fisumcom2 11824 fprodcom2fi 12012 eucalgval 12451 eucalginv 12453 eucalglt 12454 eucalgcvga 12455 eucalg 12456 sqpweven 12572 2sqpwodd 12573 ctiunctlemudc 12883 xpsff1o 13256 tx1cn 14816 txdis 14824 txhmeo 14866 xmetxp 15054 xmetxpbl 15055 xmettxlem 15056 xmettx 15057 |
| Copyright terms: Public domain | W3C validator |