ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2nd Unicode version

Theorem xp2nd 6219
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp2nd  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )

Proof of Theorem xp2nd
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4676 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. b E. c ( A  = 
<. b ,  c >.  /\  ( b  e.  B  /\  c  e.  C
) ) )
2 vex 2763 . . . . . . 7  |-  b  e. 
_V
3 vex 2763 . . . . . . 7  |-  c  e. 
_V
42, 3op2ndd 6202 . . . . . 6  |-  ( A  =  <. b ,  c
>.  ->  ( 2nd `  A
)  =  c )
54eleq1d 2262 . . . . 5  |-  ( A  =  <. b ,  c
>.  ->  ( ( 2nd `  A )  e.  C  <->  c  e.  C ) )
65biimpar 297 . . . 4  |-  ( ( A  =  <. b ,  c >.  /\  c  e.  C )  ->  ( 2nd `  A )  e.  C )
76adantrl 478 . . 3  |-  ( ( A  =  <. b ,  c >.  /\  (
b  e.  B  /\  c  e.  C )
)  ->  ( 2nd `  A )  e.  C
)
87exlimivv 1908 . 2  |-  ( E. b E. c ( A  =  <. b ,  c >.  /\  (
b  e.  B  /\  c  e.  C )
)  ->  ( 2nd `  A )  e.  C
)
91, 8sylbi 121 1  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   <.cop 3621    X. cxp 4657   ` cfv 5254   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-2nd 6194
This theorem is referenced by:  xpf1o  6900  xpmapenlem  6905  opabfi  6992  djuf1olem  7112  exmidapne  7320  cc2lem  7326  dfplpq2  7414  dfmpq2  7415  enqbreq2  7417  enqdc1  7422  mulpipq2  7431  preqlu  7532  elnp1st2nd  7536  cauappcvgprlemladd  7718  elreal2  7890  cnref1o  9716  frecuzrdgrrn  10479  frec2uzrdg  10480  frecuzrdgrcl  10481  frecuzrdgtcl  10483  frecuzrdgsuc  10485  frecuzrdgrclt  10486  frecuzrdgg  10487  frecuzrdgdomlem  10488  frecuzrdgfunlem  10490  frecuzrdgsuctlem  10494  seq3val  10531  seqvalcd  10532  fisumcom2  11581  fprodcom2fi  11769  eucalgval  12192  eucalginv  12194  eucalglt  12195  eucalgcvga  12196  eucalg  12197  sqpweven  12313  2sqpwodd  12314  ctiunctlemudc  12594  xpsff1o  12932  tx1cn  14437  txdis  14445  txhmeo  14487  xmetxp  14675  xmetxpbl  14676  xmettxlem  14677  xmettx  14678
  Copyright terms: Public domain W3C validator