| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elbl2ps | GIF version | ||
| Description: Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| Ref | Expression |
|---|---|
| elbl2ps | ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elblps 14937 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) | |
| 2 | 1 | 3expa 1206 | . . . 4 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| 3 | 2 | an32s 568 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| 4 | 3 | adantrr 479 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| 5 | simprr 531 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 6 | 5 | biantrurd 305 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃𝐷𝐴) < 𝑅 ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| 7 | 4, 6 | bitr4d 191 | 1 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 ℝ*cxr 8126 < clt 8127 PsMetcpsmet 14372 ballcbl 14375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-psmet 14380 df-bl 14383 |
| This theorem is referenced by: elbl3ps 14941 blcomps 14943 |
| Copyright terms: Public domain | W3C validator |