ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elbl Unicode version

Theorem elbl 13976
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
elbl  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )

Proof of Theorem elbl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blval 13974 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
21eleq2d 2247 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  A  e.  { x  e.  X  | 
( P D x )  <  R }
) )
3 oveq2 5885 . . . 4  |-  ( x  =  A  ->  ( P D x )  =  ( P D A ) )
43breq1d 4015 . . 3  |-  ( x  =  A  ->  (
( P D x )  <  R  <->  ( P D A )  <  R
) )
54elrab 2895 . 2  |-  ( A  e.  { x  e.  X  |  ( P D x )  < 
R }  <->  ( A  e.  X  /\  ( P D A )  < 
R ) )
62, 5bitrdi 196 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {crab 2459   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RR*cxr 7993    < clt 7994   *Metcxmet 13525   ballcbl 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-psmet 13532  df-xmet 13533  df-bl 13535
This theorem is referenced by:  elbl2  13978  xblpnf  13984  bldisj  13986  blgt0  13987  xblss2  13990  blhalf  13993  xblcntr  13999  xblm  14002  blininf  14009  blss  14013  blres  14019  xmetxpbl  14093  metcnp  14097  cnbl0  14119  bl2ioo  14127  cnopnap  14179
  Copyright terms: Public domain W3C validator