ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elbl Unicode version

Theorem elbl 12597
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
elbl  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )

Proof of Theorem elbl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blval 12595 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
21eleq2d 2210 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  A  e.  { x  e.  X  | 
( P D x )  <  R }
) )
3 oveq2 5789 . . . 4  |-  ( x  =  A  ->  ( P D x )  =  ( P D A ) )
43breq1d 3946 . . 3  |-  ( x  =  A  ->  (
( P D x )  <  R  <->  ( P D A )  <  R
) )
54elrab 2843 . 2  |-  ( A  e.  { x  e.  X  |  ( P D x )  < 
R }  <->  ( A  e.  X  /\  ( P D A )  < 
R ) )
62, 5syl6bb 195 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   {crab 2421   class class class wbr 3936   ` cfv 5130  (class class class)co 5781   RR*cxr 7822    < clt 7823   *Metcxmet 12186   ballcbl 12188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-psmet 12193  df-xmet 12194  df-bl 12196
This theorem is referenced by:  elbl2  12599  xblpnf  12605  bldisj  12607  blgt0  12608  xblss2  12611  blhalf  12614  xblcntr  12620  xblm  12623  blininf  12630  blss  12634  blres  12640  xmetxpbl  12714  metcnp  12718  cnbl0  12740  bl2ioo  12748  cnopnap  12800
  Copyright terms: Public domain W3C validator