ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsvalmod Unicode version

Theorem lgsvalmod 14505
Description: The Legendre symbol is equivalent to  a ^ (
( p  -  1 )  /  2 ),  mod  p. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 3259 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 prmz 12113 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
42, 3syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  ZZ )
5 lgscl 14500 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
64, 5syldan 282 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  ZZ )
76peano2zd 9380 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  ZZ )
8 zq 9628 . . . 4  |-  ( ( ( A  /L
P )  +  1 )  e.  ZZ  ->  ( ( A  /L
P )  +  1 )  e.  QQ )
97, 8syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  QQ )
10 oddprm 12261 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
1110adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e.  NN )
1211nnnn0d 9231 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e. 
NN0 )
13 zexpcl 10537 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
1412, 13syldan 282 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
1514peano2zd 9380 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
16 zq 9628 . . . 4  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  QQ )
1715, 16syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  QQ )
18 neg1z 9287 . . . 4  |-  -u 1  e.  ZZ
19 zq 9628 . . . 4  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
2018, 19mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  -u 1  e.  QQ )
21 prmnn 12112 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
222, 21syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  NN )
23 nnq 9635 . . . 4  |-  ( P  e.  NN  ->  P  e.  QQ )
2422, 23syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  QQ )
2522nngt0d 8965 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  0  <  P )
26 lgsval3 14504 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  =  ( ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
2726eqcomd 2183 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  ( A  /L
P ) )
2815, 22zmodcld 10347 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e. 
NN0 )
2928nn0cnd 9233 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e.  CC )
30 1cnd 7975 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  e.  CC )
316zred 9377 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  RR )
3231recnd 7988 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  CC )
3329, 30, 32subadd2d 8289 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( A  /L P )  <->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
3427, 33mpbid 147 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3534oveq1d 5892 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  mod 
P ) )
36 modqabs2 10360 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
3717, 24, 25, 36syl3anc 1238 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3835, 37eqtrd 2210 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
399, 17, 20, 24, 25, 38modqadd1 10363 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )
)
40 peano2re 8095 . . . . . . 7  |-  ( ( A  /L P )  e.  RR  ->  ( ( A  /L
P )  +  1 )  e.  RR )
4131, 40syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  RR )
4241recnd 7988 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  CC )
43 ax-1cn 7906 . . . . 5  |-  1  e.  CC
44 negsub 8207 . . . . 5  |-  ( ( ( ( A  /L P )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  +  -u 1 )  =  ( ( ( A  /L P )  +  1 )  - 
1 ) )
4542, 43, 44sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( ( ( A  /L
P )  +  1 )  -  1 ) )
46 pncan 8165 . . . . 5  |-  ( ( ( A  /L
P )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  -  1 )  =  ( A  /L
P ) )
4732, 43, 46sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  -  1 )  =  ( A  /L P ) )
4845, 47eqtrd 2210 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( A  /L P ) )
4948oveq1d 5892 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( A  /L P )  mod  P ) )
5014zred 9377 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
51 peano2re 8095 . . . . . . 7  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  RR  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  RR )
5250, 51syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  RR )
5352recnd 7988 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  CC )
54 negsub 8207 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  +  -u
1 )  =  ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  1 ) )
5553, 43, 54sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 ) )
5650recnd 7988 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  CC )
57 pncan 8165 . . . . 5  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 )  =  ( A ^ ( ( P  -  1 )  / 
2 ) ) )
5856, 43, 57sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
5955, 58eqtrd 2210 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
6059oveq1d 5892 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
6139, 49, 603eqtr3d 2218 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    \ cdif 3128   {csn 3594   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    < clt 7994    - cmin 8130   -ucneg 8131    / cdiv 8631   NNcn 8921   2c2 8972   NN0cn0 9178   ZZcz 9255   QQcq 9621    mod cmo 10324   ^cexp 10521   Primecprime 12109    /Lclgs 14483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-2o 6420  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-proddc 11561  df-dvds 11797  df-gcd 11946  df-prm 12110  df-phi 12213  df-pc 12287  df-lgs 14484
This theorem is referenced by:  lgsdirprm  14520  lgsne0  14524
  Copyright terms: Public domain W3C validator