ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsvalmod Unicode version

Theorem lgsvalmod 15260
Description: The Legendre symbol is equivalent to  a ^ (
( p  -  1 )  /  2 ),  mod  p. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 3285 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 prmz 12279 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
42, 3syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  ZZ )
5 lgscl 15255 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
64, 5syldan 282 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  ZZ )
76peano2zd 9451 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  ZZ )
8 zq 9700 . . . 4  |-  ( ( ( A  /L
P )  +  1 )  e.  ZZ  ->  ( ( A  /L
P )  +  1 )  e.  QQ )
97, 8syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  QQ )
10 oddprm 12428 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
1110adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e.  NN )
1211nnnn0d 9302 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e. 
NN0 )
13 zexpcl 10646 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
1412, 13syldan 282 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
1514peano2zd 9451 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
16 zq 9700 . . . 4  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  QQ )
1715, 16syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  QQ )
18 neg1z 9358 . . . 4  |-  -u 1  e.  ZZ
19 zq 9700 . . . 4  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
2018, 19mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  -u 1  e.  QQ )
21 prmnn 12278 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
222, 21syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  NN )
23 nnq 9707 . . . 4  |-  ( P  e.  NN  ->  P  e.  QQ )
2422, 23syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  QQ )
2522nngt0d 9034 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  0  <  P )
26 lgsval3 15259 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  =  ( ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
2726eqcomd 2202 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  ( A  /L
P ) )
2815, 22zmodcld 10437 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e. 
NN0 )
2928nn0cnd 9304 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e.  CC )
30 1cnd 8042 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  e.  CC )
316zred 9448 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  RR )
3231recnd 8055 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  CC )
3329, 30, 32subadd2d 8356 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( A  /L P )  <->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
3427, 33mpbid 147 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3534oveq1d 5937 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  mod 
P ) )
36 modqabs2 10450 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
3717, 24, 25, 36syl3anc 1249 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3835, 37eqtrd 2229 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
399, 17, 20, 24, 25, 38modqadd1 10453 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )
)
40 peano2re 8162 . . . . . . 7  |-  ( ( A  /L P )  e.  RR  ->  ( ( A  /L
P )  +  1 )  e.  RR )
4131, 40syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  RR )
4241recnd 8055 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  CC )
43 ax-1cn 7972 . . . . 5  |-  1  e.  CC
44 negsub 8274 . . . . 5  |-  ( ( ( ( A  /L P )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  +  -u 1 )  =  ( ( ( A  /L P )  +  1 )  - 
1 ) )
4542, 43, 44sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( ( ( A  /L
P )  +  1 )  -  1 ) )
46 pncan 8232 . . . . 5  |-  ( ( ( A  /L
P )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  -  1 )  =  ( A  /L
P ) )
4732, 43, 46sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  -  1 )  =  ( A  /L P ) )
4845, 47eqtrd 2229 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( A  /L P ) )
4948oveq1d 5937 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( A  /L P )  mod  P ) )
5014zred 9448 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
51 peano2re 8162 . . . . . . 7  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  RR  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  RR )
5250, 51syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  RR )
5352recnd 8055 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  CC )
54 negsub 8274 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  +  -u
1 )  =  ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  1 ) )
5553, 43, 54sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 ) )
5650recnd 8055 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  CC )
57 pncan 8232 . . . . 5  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 )  =  ( A ^ ( ( P  -  1 )  / 
2 ) ) )
5856, 43, 57sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
5955, 58eqtrd 2229 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
6059oveq1d 5937 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
6139, 49, 603eqtr3d 2237 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    \ cdif 3154   {csn 3622   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    - cmin 8197   -ucneg 8198    / cdiv 8699   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   QQcq 9693    mod cmo 10414   ^cexp 10630   Primecprime 12275    /Lclgs 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379  df-pc 12454  df-lgs 15239
This theorem is referenced by:  lgsdirprm  15275  lgsne0  15279  gausslemma2d  15310
  Copyright terms: Public domain W3C validator