ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsvalmod Unicode version

Theorem lgsvalmod 15368
Description: The Legendre symbol is equivalent to  a ^ (
( p  -  1 )  /  2 ),  mod  p. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 3286 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 prmz 12306 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
42, 3syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  ZZ )
5 lgscl 15363 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
64, 5syldan 282 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  ZZ )
76peano2zd 9470 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  ZZ )
8 zq 9719 . . . 4  |-  ( ( ( A  /L
P )  +  1 )  e.  ZZ  ->  ( ( A  /L
P )  +  1 )  e.  QQ )
97, 8syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  QQ )
10 oddprm 12455 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
1110adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e.  NN )
1211nnnn0d 9321 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e. 
NN0 )
13 zexpcl 10665 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
1412, 13syldan 282 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
1514peano2zd 9470 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
16 zq 9719 . . . 4  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  QQ )
1715, 16syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  QQ )
18 neg1z 9377 . . . 4  |-  -u 1  e.  ZZ
19 zq 9719 . . . 4  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
2018, 19mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  -u 1  e.  QQ )
21 prmnn 12305 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
222, 21syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  NN )
23 nnq 9726 . . . 4  |-  ( P  e.  NN  ->  P  e.  QQ )
2422, 23syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  QQ )
2522nngt0d 9053 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  0  <  P )
26 lgsval3 15367 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  =  ( ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
2726eqcomd 2202 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  ( A  /L
P ) )
2815, 22zmodcld 10456 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e. 
NN0 )
2928nn0cnd 9323 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e.  CC )
30 1cnd 8061 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  e.  CC )
316zred 9467 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  RR )
3231recnd 8074 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  CC )
3329, 30, 32subadd2d 8375 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( A  /L P )  <->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
3427, 33mpbid 147 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3534oveq1d 5940 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  mod 
P ) )
36 modqabs2 10469 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
3717, 24, 25, 36syl3anc 1249 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3835, 37eqtrd 2229 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
399, 17, 20, 24, 25, 38modqadd1 10472 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )
)
40 peano2re 8181 . . . . . . 7  |-  ( ( A  /L P )  e.  RR  ->  ( ( A  /L
P )  +  1 )  e.  RR )
4131, 40syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  RR )
4241recnd 8074 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  CC )
43 ax-1cn 7991 . . . . 5  |-  1  e.  CC
44 negsub 8293 . . . . 5  |-  ( ( ( ( A  /L P )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  +  -u 1 )  =  ( ( ( A  /L P )  +  1 )  - 
1 ) )
4542, 43, 44sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( ( ( A  /L
P )  +  1 )  -  1 ) )
46 pncan 8251 . . . . 5  |-  ( ( ( A  /L
P )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  -  1 )  =  ( A  /L
P ) )
4732, 43, 46sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  -  1 )  =  ( A  /L P ) )
4845, 47eqtrd 2229 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( A  /L P ) )
4948oveq1d 5940 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( A  /L P )  mod  P ) )
5014zred 9467 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
51 peano2re 8181 . . . . . . 7  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  RR  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  RR )
5250, 51syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  RR )
5352recnd 8074 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  CC )
54 negsub 8293 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  +  -u
1 )  =  ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  1 ) )
5553, 43, 54sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 ) )
5650recnd 8074 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  CC )
57 pncan 8251 . . . . 5  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 )  =  ( A ^ ( ( P  -  1 )  / 
2 ) ) )
5856, 43, 57sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
5955, 58eqtrd 2229 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
6059oveq1d 5940 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
6139, 49, 603eqtr3d 2237 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    \ cdif 3154   {csn 3623   class class class wbr 4034  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    < clt 8080    - cmin 8216   -ucneg 8217    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   QQcq 9712    mod cmo 10433   ^cexp 10649   Primecprime 12302    /Lclgs 15346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-proddc 11735  df-dvds 11972  df-gcd 12148  df-prm 12303  df-phi 12406  df-pc 12481  df-lgs 15347
This theorem is referenced by:  lgsdirprm  15383  lgsne0  15387  gausslemma2d  15418
  Copyright terms: Public domain W3C validator