ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsvalmod Unicode version

Theorem lgsvalmod 13679
Description: The Legendre symbol is equivalent to  a ^ (
( p  -  1 )  /  2 ),  mod  p. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 3249 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 275 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 prmz 12058 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
42, 3syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  ZZ )
5 lgscl 13674 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
64, 5syldan 280 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  ZZ )
76peano2zd 9330 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  ZZ )
8 zq 9578 . . . 4  |-  ( ( ( A  /L
P )  +  1 )  e.  ZZ  ->  ( ( A  /L
P )  +  1 )  e.  QQ )
97, 8syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  QQ )
10 oddprm 12206 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
1110adantl 275 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e.  NN )
1211nnnn0d 9181 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  -  1 )  /  2 )  e. 
NN0 )
13 zexpcl 10484 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
1412, 13syldan 280 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
1514peano2zd 9330 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
16 zq 9578 . . . 4  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  QQ )
1715, 16syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  QQ )
18 neg1z 9237 . . . 4  |-  -u 1  e.  ZZ
19 zq 9578 . . . 4  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
2018, 19mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  -u 1  e.  QQ )
21 prmnn 12057 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
222, 21syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  NN )
23 nnq 9585 . . . 4  |-  ( P  e.  NN  ->  P  e.  QQ )
2422, 23syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  QQ )
2522nngt0d 8915 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  0  <  P )
26 lgsval3 13678 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  =  ( ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
2726eqcomd 2176 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  ( A  /L
P ) )
2815, 22zmodcld 10294 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e. 
NN0 )
2928nn0cnd 9183 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  e.  CC )
30 1cnd 7929 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  e.  CC )
316zred 9327 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  RR )
3231recnd 7941 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  e.  CC )
3329, 30, 32subadd2d 8242 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( A  /L P )  <->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
3427, 33mpbid 146 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3534oveq1d 5866 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  mod 
P ) )
36 modqabs2 10307 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
3717, 24, 25, 36syl3anc 1233 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) )
3835, 37eqtrd 2203 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
399, 17, 20, 24, 25, 38modqadd1 10310 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )
)
40 peano2re 8048 . . . . . . 7  |-  ( ( A  /L P )  e.  RR  ->  ( ( A  /L
P )  +  1 )  e.  RR )
4131, 40syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  RR )
4241recnd 7941 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  +  1 )  e.  CC )
43 ax-1cn 7860 . . . . 5  |-  1  e.  CC
44 negsub 8160 . . . . 5  |-  ( ( ( ( A  /L P )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  +  -u 1 )  =  ( ( ( A  /L P )  +  1 )  - 
1 ) )
4542, 43, 44sylancl 411 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( ( ( A  /L
P )  +  1 )  -  1 ) )
46 pncan 8118 . . . . 5  |-  ( ( ( A  /L
P )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  /L P )  +  1 )  -  1 )  =  ( A  /L
P ) )
4732, 43, 46sylancl 411 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  -  1 )  =  ( A  /L P ) )
4845, 47eqtrd 2203 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  /L
P )  +  1 )  +  -u 1
)  =  ( A  /L P ) )
4948oveq1d 5866 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A  /L P )  +  1 )  +  -u
1 )  mod  P
)  =  ( ( A  /L P )  mod  P ) )
5014zred 9327 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
51 peano2re 8048 . . . . . . 7  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  RR  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  RR )
5250, 51syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  RR )
5352recnd 7941 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  CC )
54 negsub 8160 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  +  -u
1 )  =  ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  -  1 ) )
5553, 43, 54sylancl 411 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 ) )
5650recnd 7941 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  CC )
57 pncan 8118 . . . . 5  |-  ( ( ( A ^ (
( P  -  1 )  /  2 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  -  1 )  =  ( A ^ ( ( P  -  1 )  / 
2 ) ) )
5856, 43, 57sylancl 411 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  -  1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
5955, 58eqtrd 2203 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  +  -u 1 )  =  ( A ^ (
( P  -  1 )  /  2 ) ) )
6059oveq1d 5866 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  +  -u 1
)  mod  P )  =  ( ( A ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
6139, 49, 603eqtr3d 2211 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    \ cdif 3118   {csn 3581   class class class wbr 3987  (class class class)co 5851   CCcc 7765   RRcr 7766   0cc0 7767   1c1 7768    + caddc 7770    < clt 7947    - cmin 8083   -ucneg 8084    / cdiv 8582   NNcn 8871   2c2 8922   NN0cn0 9128   ZZcz 9205   QQcq 9571    mod cmo 10271   ^cexp 10468   Primecprime 12054    /Lclgs 13657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-2o 6394  df-oadd 6397  df-er 6511  df-en 6717  df-dom 6718  df-fin 6719  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-5 8933  df-6 8934  df-7 8935  df-8 8936  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-ihash 10703  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-clim 11235  df-proddc 11507  df-dvds 11743  df-gcd 11891  df-prm 12055  df-phi 12158  df-pc 12232  df-lgs 13658
This theorem is referenced by:  lgsdirprm  13694  lgsne0  13698
  Copyright terms: Public domain W3C validator