| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsvalmod | Unicode version | ||
| Description: The Legendre symbol is
equivalent to |
| Ref | Expression |
|---|---|
| lgsvalmod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3326 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | prmz 12628 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | lgscl 15687 |
. . . . . 6
| |
| 6 | 4, 5 | syldan 282 |
. . . . 5
|
| 7 | 6 | peano2zd 9568 |
. . . 4
|
| 8 | zq 9817 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | oddprm 12777 |
. . . . . . . 8
| |
| 11 | 10 | adantl 277 |
. . . . . . 7
|
| 12 | 11 | nnnn0d 9418 |
. . . . . 6
|
| 13 | zexpcl 10771 |
. . . . . 6
| |
| 14 | 12, 13 | syldan 282 |
. . . . 5
|
| 15 | 14 | peano2zd 9568 |
. . . 4
|
| 16 | zq 9817 |
. . . 4
| |
| 17 | 15, 16 | syl 14 |
. . 3
|
| 18 | neg1z 9474 |
. . . 4
| |
| 19 | zq 9817 |
. . . 4
| |
| 20 | 18, 19 | mp1i 10 |
. . 3
|
| 21 | prmnn 12627 |
. . . . 5
| |
| 22 | 2, 21 | syl 14 |
. . . 4
|
| 23 | nnq 9824 |
. . . 4
| |
| 24 | 22, 23 | syl 14 |
. . 3
|
| 25 | 22 | nngt0d 9150 |
. . 3
|
| 26 | lgsval3 15691 |
. . . . . . 7
| |
| 27 | 26 | eqcomd 2235 |
. . . . . 6
|
| 28 | 15, 22 | zmodcld 10562 |
. . . . . . . 8
|
| 29 | 28 | nn0cnd 9420 |
. . . . . . 7
|
| 30 | 1cnd 8158 |
. . . . . . 7
| |
| 31 | 6 | zred 9565 |
. . . . . . . 8
|
| 32 | 31 | recnd 8171 |
. . . . . . 7
|
| 33 | 29, 30, 32 | subadd2d 8472 |
. . . . . 6
|
| 34 | 27, 33 | mpbid 147 |
. . . . 5
|
| 35 | 34 | oveq1d 6015 |
. . . 4
|
| 36 | modqabs2 10575 |
. . . . 5
| |
| 37 | 17, 24, 25, 36 | syl3anc 1271 |
. . . 4
|
| 38 | 35, 37 | eqtrd 2262 |
. . 3
|
| 39 | 9, 17, 20, 24, 25, 38 | modqadd1 10578 |
. 2
|
| 40 | peano2re 8278 |
. . . . . . 7
| |
| 41 | 31, 40 | syl 14 |
. . . . . 6
|
| 42 | 41 | recnd 8171 |
. . . . 5
|
| 43 | ax-1cn 8088 |
. . . . 5
| |
| 44 | negsub 8390 |
. . . . 5
| |
| 45 | 42, 43, 44 | sylancl 413 |
. . . 4
|
| 46 | pncan 8348 |
. . . . 5
| |
| 47 | 32, 43, 46 | sylancl 413 |
. . . 4
|
| 48 | 45, 47 | eqtrd 2262 |
. . 3
|
| 49 | 48 | oveq1d 6015 |
. 2
|
| 50 | 14 | zred 9565 |
. . . . . . 7
|
| 51 | peano2re 8278 |
. . . . . . 7
| |
| 52 | 50, 51 | syl 14 |
. . . . . 6
|
| 53 | 52 | recnd 8171 |
. . . . 5
|
| 54 | negsub 8390 |
. . . . 5
| |
| 55 | 53, 43, 54 | sylancl 413 |
. . . 4
|
| 56 | 50 | recnd 8171 |
. . . . 5
|
| 57 | pncan 8348 |
. . . . 5
| |
| 58 | 56, 43, 57 | sylancl 413 |
. . . 4
|
| 59 | 55, 58 | eqtrd 2262 |
. . 3
|
| 60 | 59 | oveq1d 6015 |
. 2
|
| 61 | 39, 49, 60 | 3eqtr3d 2270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-2o 6561 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-proddc 12057 df-dvds 12294 df-gcd 12470 df-prm 12625 df-phi 12728 df-pc 12803 df-lgs 15671 |
| This theorem is referenced by: lgsdirprm 15707 lgsne0 15711 gausslemma2d 15742 |
| Copyright terms: Public domain | W3C validator |