ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprmge3 Unicode version

Theorem oddprmge3 12154
Description: An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.)
Assertion
Ref Expression
oddprmge3  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
3 ) )

Proof of Theorem oddprmge3
StepHypRef Expression
1 eldifi 3272 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
2 oddprmgt2 12153 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <  P )
3 3z 9301 . . . . 5  |-  3  e.  ZZ
43a1i 9 . . . 4  |-  ( ( P  e.  Prime  /\  2  <  P )  ->  3  e.  ZZ )
5 prmz 12130 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
65adantr 276 . . . 4  |-  ( ( P  e.  Prime  /\  2  <  P )  ->  P  e.  ZZ )
7 df-3 8998 . . . . 5  |-  3  =  ( 2  +  1 )
8 2z 9300 . . . . . . 7  |-  2  e.  ZZ
9 zltp1le 9326 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  <  P  <->  ( 2  +  1 )  <_  P ) )
108, 5, 9sylancr 414 . . . . . 6  |-  ( P  e.  Prime  ->  ( 2  <  P  <->  ( 2  +  1 )  <_  P ) )
1110biimpa 296 . . . . 5  |-  ( ( P  e.  Prime  /\  2  <  P )  ->  (
2  +  1 )  <_  P )
127, 11eqbrtrid 4053 . . . 4  |-  ( ( P  e.  Prime  /\  2  <  P )  ->  3  <_  P )
134, 6, 123jca 1179 . . 3  |-  ( ( P  e.  Prime  /\  2  <  P )  ->  (
3  e.  ZZ  /\  P  e.  ZZ  /\  3  <_  P ) )
141, 2, 13syl2anc 411 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 3  e.  ZZ  /\  P  e.  ZZ  /\  3  <_  P ) )
15 eluz2 9553 . 2  |-  ( P  e.  ( ZZ>= `  3
)  <->  ( 3  e.  ZZ  /\  P  e.  ZZ  /\  3  <_  P ) )
1614, 15sylibr 134 1  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2160    \ cdif 3141   {csn 3607   class class class wbr 4018   ` cfv 5231  (class class class)co 5891   1c1 7831    + caddc 7833    < clt 8011    <_ cle 8012   2c2 8989   3c3 8990   ZZcz 9272   ZZ>=cuz 9547   Primecprime 12126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948  ax-arch 7949  ax-caucvg 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-1o 6435  df-2o 6436  df-er 6553  df-en 6759  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-q 9639  df-rp 9673  df-seqfrec 10465  df-exp 10539  df-cj 10870  df-re 10871  df-im 10872  df-rsqrt 11026  df-abs 11027  df-dvds 11814  df-prm 12127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator