ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioo2 Unicode version

Theorem elioo2 9920
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
elioo2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <  B ) ) )

Proof of Theorem elioo2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iooval2 9914 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR  |  ( A  < 
x  /\  x  <  B ) } )
21eleq2d 2247 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  C  e.  { x  e.  RR  | 
( A  <  x  /\  x  <  B ) } ) )
3 breq2 4007 . . . . 5  |-  ( x  =  C  ->  ( A  <  x  <->  A  <  C ) )
4 breq1 4006 . . . . 5  |-  ( x  =  C  ->  (
x  <  B  <->  C  <  B ) )
53, 4anbi12d 473 . . . 4  |-  ( x  =  C  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  C  /\  C  <  B ) ) )
65elrab 2893 . . 3  |-  ( C  e.  { x  e.  RR  |  ( A  <  x  /\  x  <  B ) }  <->  ( C  e.  RR  /\  ( A  <  C  /\  C  <  B ) ) )
7 3anass 982 . . 3  |-  ( ( C  e.  RR  /\  A  <  C  /\  C  <  B )  <->  ( C  e.  RR  /\  ( A  <  C  /\  C  <  B ) ) )
86, 7bitr4i 187 . 2  |-  ( C  e.  { x  e.  RR  |  ( A  <  x  /\  x  <  B ) }  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <  B ) )
92, 8bitrdi 196 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {crab 2459   class class class wbr 4003  (class class class)co 5874   RRcr 7809   RR*cxr 7990    < clt 7991   (,)cioo 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-ioo 9891
This theorem is referenced by:  eliooord  9927  elioopnf  9966  elioomnf  9967  dfrp2  10263  bl2ioo  14012  dedekindicc  14081  reeff1oleme  14163  reeff1o  14164  sin0pilem2  14173  pilem3  14174  sincosq1sgn  14217  sincosq2sgn  14218  sincosq3sgn  14219  sincosq4sgn  14220  sinq12gt0  14221  cosq14gt0  14223  cosq23lt0  14224  coseq0q4123  14225  coseq00topi  14226  coseq0negpitopi  14227  sincos6thpi  14233  cosordlem  14240  cos02pilt1  14242  cos0pilt1  14243  ioocosf1o  14245  iooref1o  14752  taupi  14790
  Copyright terms: Public domain W3C validator