| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elioo2 | Unicode version | ||
| Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| elioo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval2 10079 |
. . 3
| |
| 2 | 1 | eleq2d 2279 |
. 2
|
| 3 | breq2 4066 |
. . . . 5
| |
| 4 | breq1 4065 |
. . . . 5
| |
| 5 | 3, 4 | anbi12d 473 |
. . . 4
|
| 6 | 5 | elrab 2939 |
. . 3
|
| 7 | 3anass 987 |
. . 3
| |
| 8 | 6, 7 | bitr4i 187 |
. 2
|
| 9 | 2, 8 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-ioo 10056 |
| This theorem is referenced by: eliooord 10092 elioopnf 10131 elioomnf 10132 dfrp2 10450 bl2ioo 15189 dedekindicc 15272 reeff1oleme 15411 reeff1o 15412 sin0pilem2 15421 pilem3 15422 sincosq1sgn 15465 sincosq2sgn 15466 sincosq3sgn 15467 sincosq4sgn 15468 sinq12gt0 15469 cosq14gt0 15471 cosq23lt0 15472 coseq0q4123 15473 coseq00topi 15474 coseq0negpitopi 15475 sincos6thpi 15481 cosordlem 15488 cos02pilt1 15490 cos0pilt1 15491 ioocosf1o 15493 iooref1o 16313 taupi 16352 |
| Copyright terms: Public domain | W3C validator |