Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elioo2 | Unicode version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 9843 | . . 3 | |
2 | 1 | eleq2d 2234 | . 2 |
3 | breq2 3981 | . . . . 5 | |
4 | breq1 3980 | . . . . 5 | |
5 | 3, 4 | anbi12d 465 | . . . 4 |
6 | 5 | elrab 2878 | . . 3 |
7 | 3anass 971 | . . 3 | |
8 | 6, 7 | bitr4i 186 | . 2 |
9 | 2, 8 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 967 wceq 1342 wcel 2135 crab 2446 class class class wbr 3977 (class class class)co 5837 cr 7744 cxr 7924 clt 7925 cioo 9816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-id 4266 df-po 4269 df-iso 4270 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-iota 5148 df-fun 5185 df-fv 5191 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-ioo 9820 |
This theorem is referenced by: eliooord 9856 elioopnf 9895 elioomnf 9896 dfrp2 10190 bl2ioo 13109 dedekindicc 13178 reeff1oleme 13260 reeff1o 13261 sin0pilem2 13270 pilem3 13271 sincosq1sgn 13314 sincosq2sgn 13315 sincosq3sgn 13316 sincosq4sgn 13317 sinq12gt0 13318 cosq14gt0 13320 cosq23lt0 13321 coseq0q4123 13322 coseq00topi 13323 coseq0negpitopi 13324 sincos6thpi 13330 cosordlem 13337 cos02pilt1 13339 cos0pilt1 13340 ioocosf1o 13342 iooref1o 13774 taupi 13810 |
Copyright terms: Public domain | W3C validator |