ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioo2 Unicode version

Theorem elioo2 10085
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
elioo2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <  B ) ) )

Proof of Theorem elioo2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iooval2 10079 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR  |  ( A  < 
x  /\  x  <  B ) } )
21eleq2d 2279 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  C  e.  { x  e.  RR  | 
( A  <  x  /\  x  <  B ) } ) )
3 breq2 4066 . . . . 5  |-  ( x  =  C  ->  ( A  <  x  <->  A  <  C ) )
4 breq1 4065 . . . . 5  |-  ( x  =  C  ->  (
x  <  B  <->  C  <  B ) )
53, 4anbi12d 473 . . . 4  |-  ( x  =  C  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  C  /\  C  <  B ) ) )
65elrab 2939 . . 3  |-  ( C  e.  { x  e.  RR  |  ( A  <  x  /\  x  <  B ) }  <->  ( C  e.  RR  /\  ( A  <  C  /\  C  <  B ) ) )
7 3anass 987 . . 3  |-  ( ( C  e.  RR  /\  A  <  C  /\  C  <  B )  <->  ( C  e.  RR  /\  ( A  <  C  /\  C  <  B ) ) )
86, 7bitr4i 187 . 2  |-  ( C  e.  { x  e.  RR  |  ( A  <  x  /\  x  <  B ) }  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <  B ) )
92, 8bitrdi 196 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180   {crab 2492   class class class wbr 4062  (class class class)co 5974   RRcr 7966   RR*cxr 8148    < clt 8149   (,)cioo 10052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-ioo 10056
This theorem is referenced by:  eliooord  10092  elioopnf  10131  elioomnf  10132  dfrp2  10450  bl2ioo  15189  dedekindicc  15272  reeff1oleme  15411  reeff1o  15412  sin0pilem2  15421  pilem3  15422  sincosq1sgn  15465  sincosq2sgn  15466  sincosq3sgn  15467  sincosq4sgn  15468  sinq12gt0  15469  cosq14gt0  15471  cosq23lt0  15472  coseq0q4123  15473  coseq00topi  15474  coseq0negpitopi  15475  sincos6thpi  15481  cosordlem  15488  cos02pilt1  15490  cos0pilt1  15491  ioocosf1o  15493  iooref1o  16313  taupi  16352
  Copyright terms: Public domain W3C validator