![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elixx1 | GIF version |
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
elixx1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
2 | 1 | ixxval 9965 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
3 | 2 | eleq2d 2263 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ 𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)})) |
4 | breq2 4034 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐴𝑅𝑧 ↔ 𝐴𝑅𝐶)) | |
5 | breq1 4033 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑧𝑆𝐵 ↔ 𝐶𝑆𝐵)) | |
6 | 4, 5 | anbi12d 473 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵) ↔ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
7 | 6 | elrab 2917 | . . 3 ⊢ (𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
8 | 3anass 984 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | |
9 | 7, 8 | bitr4i 187 | . 2 ⊢ (𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)) |
10 | 3, 9 | bitrdi 196 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {crab 2476 class class class wbr 4030 (class class class)co 5919 ∈ cmpo 5921 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 |
This theorem is referenced by: elixx3g 9970 ixxssixx 9971 ixxdisj 9972 ixxss1 9973 ixxss2 9974 ixxss12 9975 elioo1 9980 elioc1 9991 elico1 9992 elicc1 9993 |
Copyright terms: Public domain | W3C validator |