ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss1 Unicode version

Theorem ixxss1 9875
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss1.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z S y ) } )
ixxss1.3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W B  /\  B T w )  ->  A R w ) )
Assertion
Ref Expression
ixxss1  |-  ( ( A  e.  RR*  /\  A W B )  ->  ( B P C )  C_  ( A O C ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
w, W
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    O( y, z)    W( x, y, z)

Proof of Theorem ixxss1
StepHypRef Expression
1 ixxss1.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z S y ) } )
21elixx3g 9872 . . . . . . 7  |-  ( w  e.  ( B P C )  <->  ( ( B  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  /\  ( B T w  /\  w S C ) ) )
32simplbi 274 . . . . . 6  |-  ( w  e.  ( B P C )  ->  ( B  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* ) )
43adantl 277 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  ( B  e.  RR*  /\  C  e. 
RR*  /\  w  e.  RR* ) )
54simp3d 1011 . . . 4  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  w  e.  RR* )
6 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  A W B )
72simprbi 275 . . . . . . 7  |-  ( w  e.  ( B P C )  ->  ( B T w  /\  w S C ) )
87adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  ( B T w  /\  w S C ) )
98simpld 112 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  B T w )
10 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  A  e.  RR* )
114simp1d 1009 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  B  e.  RR* )
12 ixxss1.3 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W B  /\  B T w )  ->  A R w ) )
1310, 11, 5, 12syl3anc 1238 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  ( ( A W B  /\  B T w )  ->  A R w ) )
146, 9, 13mp2and 433 . . . 4  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  A R w )
158simprd 114 . . . 4  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  w S C )
164simp2d 1010 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  C  e.  RR* )
17 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
1817elixx1 9868 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( A O C )  <->  ( w  e.  RR*  /\  A R w  /\  w S C ) ) )
1910, 16, 18syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  ( w  e.  ( A O C )  <->  ( w  e. 
RR*  /\  A R w  /\  w S C ) ) )
205, 14, 15, 19mpbir3and 1180 . . 3  |-  ( ( ( A  e.  RR*  /\  A W B )  /\  w  e.  ( B P C ) )  ->  w  e.  ( A O C ) )
2120ex 115 . 2  |-  ( ( A  e.  RR*  /\  A W B )  ->  (
w  e.  ( B P C )  ->  w  e.  ( A O C ) ) )
2221ssrdv 3159 1  |-  ( ( A  e.  RR*  /\  A W B )  ->  ( B P C )  C_  ( A O C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   {crab 2457    C_ wss 3127   class class class wbr 3998  (class class class)co 5865    e. cmpo 5867   RR*cxr 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970
This theorem is referenced by:  iooss1  9887
  Copyright terms: Public domain W3C validator