| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpd | Unicode version | ||
| Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| elrpd.1 |
|
| elrpd.2 |
|
| Ref | Expression |
|---|---|
| elrpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpd.1 |
. 2
| |
| 2 | elrpd.2 |
. 2
| |
| 3 | elrp 9779 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-rp 9778 |
| This theorem is referenced by: mul2lt0rgt0 9884 mul2lt0np 9887 zltaddlt1le 10131 modqval 10471 ltexp2a 10738 leexp2a 10739 expnlbnd2 10812 nn0ltexp2 10856 resqrexlem1arp 11349 resqrexlemp1rp 11350 resqrexlemcalc2 11359 resqrexlemcalc3 11360 resqrexlemgt0 11364 resqrexlemglsq 11366 rpsqrtcl 11385 absrpclap 11405 rpmaxcl 11567 rpmincl 11582 xrminrpcl 11618 xrbdtri 11620 mulcn2 11656 reccn2ap 11657 climge0 11669 divcnv 11841 georeclim 11857 cvgratnnlembern 11867 cvgratnnlemsumlt 11872 cvgratnnlemfm 11873 cvgratnnlemrate 11874 cvgratnn 11875 cvgratz 11876 rpefcl 12029 efltim 12042 ef01bndlem 12100 pythagtriplem12 12631 pythagtriplem14 12633 pythagtriplem16 12635 bdmopn 15009 mulcncflem 15112 ivthinclemlopn 15141 ivthinclemuopn 15143 dveflem 15231 reeff1olem 15276 pilem3 15288 tanrpcl 15342 cosordlem 15354 rplogcl 15384 logdivlti 15386 cxplt 15421 cxple 15422 rpabscxpbnd 15445 ltexp2 15446 iooref1o 16010 |
| Copyright terms: Public domain | W3C validator |