ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc1 Unicode version

Theorem enqdc1 7361
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q  C )

Proof of Theorem enqdc1
StepHypRef Expression
1 xp1st 6166 . . . 4  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
2 xp2nd 6167 . . . 4  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
31, 2jca 306 . . 3  |-  ( C  e.  ( N.  X.  N. )  ->  ( ( 1st `  C )  e.  N.  /\  ( 2nd `  C )  e. 
N. ) )
4 enqdc 7360 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. ) )  -> DECID  <. A ,  B >.  ~Q 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
53, 4sylan2 286 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
6 1st2nd2 6176 . . . . 5  |-  ( C  e.  ( N.  X.  N. )  ->  C  = 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
76breq2d 4016 . . . 4  |-  ( C  e.  ( N.  X.  N. )  ->  ( <. A ,  B >.  ~Q  C  <->  <. A ,  B >.  ~Q  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
87dcbid 838 . . 3  |-  ( C  e.  ( N.  X.  N. )  ->  (DECID  <. A ,  B >.  ~Q  C  <-> DECID  <. A ,  B >.  ~Q  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
98adantl 277 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  (DECID 
<. A ,  B >.  ~Q  C  <-> DECID  <. A ,  B >.  ~Q 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
105, 9mpbird 167 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    e. wcel 2148   <.cop 3596   class class class wbr 4004    X. cxp 4625   ` cfv 5217   1stc1st 6139   2ndc2nd 6140   N.cnpi 7271    ~Q ceq 7278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-oadd 6421  df-omul 6422  df-ni 7303  df-mi 7305  df-enq 7346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator