ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc1 Unicode version

Theorem enqdc1 7429
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q  C )

Proof of Theorem enqdc1
StepHypRef Expression
1 xp1st 6223 . . . 4  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
2 xp2nd 6224 . . . 4  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
31, 2jca 306 . . 3  |-  ( C  e.  ( N.  X.  N. )  ->  ( ( 1st `  C )  e.  N.  /\  ( 2nd `  C )  e. 
N. ) )
4 enqdc 7428 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. ) )  -> DECID  <. A ,  B >.  ~Q 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
53, 4sylan2 286 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
6 1st2nd2 6233 . . . . 5  |-  ( C  e.  ( N.  X.  N. )  ->  C  = 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
76breq2d 4045 . . . 4  |-  ( C  e.  ( N.  X.  N. )  ->  ( <. A ,  B >.  ~Q  C  <->  <. A ,  B >.  ~Q  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
87dcbid 839 . . 3  |-  ( C  e.  ( N.  X.  N. )  ->  (DECID  <. A ,  B >.  ~Q  C  <-> DECID  <. A ,  B >.  ~Q  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
98adantl 277 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  (DECID 
<. A ,  B >.  ~Q  C  <-> DECID  <. A ,  B >.  ~Q 
<. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
105, 9mpbird 167 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    e. wcel 2167   <.cop 3625   class class class wbr 4033    X. cxp 4661   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   N.cnpi 7339    ~Q ceq 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-ni 7371  df-mi 7373  df-enq 7414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator