ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc1 GIF version

Theorem enqdc1 7457
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc1 (((𝐴N𝐵N) ∧ 𝐶 ∈ (N × N)) → DECID𝐴, 𝐵⟩ ~Q 𝐶)

Proof of Theorem enqdc1
StepHypRef Expression
1 xp1st 6241 . . . 4 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
2 xp2nd 6242 . . . 4 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
31, 2jca 306 . . 3 (𝐶 ∈ (N × N) → ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N))
4 enqdc 7456 . . 3 (((𝐴N𝐵N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → DECID𝐴, 𝐵⟩ ~Q ⟨(1st𝐶), (2nd𝐶)⟩)
53, 4sylan2 286 . 2 (((𝐴N𝐵N) ∧ 𝐶 ∈ (N × N)) → DECID𝐴, 𝐵⟩ ~Q ⟨(1st𝐶), (2nd𝐶)⟩)
6 1st2nd2 6251 . . . . 5 (𝐶 ∈ (N × N) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
76breq2d 4055 . . . 4 (𝐶 ∈ (N × N) → (⟨𝐴, 𝐵⟩ ~Q 𝐶 ↔ ⟨𝐴, 𝐵⟩ ~Q ⟨(1st𝐶), (2nd𝐶)⟩))
87dcbid 839 . . 3 (𝐶 ∈ (N × N) → (DECID𝐴, 𝐵⟩ ~Q 𝐶DECID𝐴, 𝐵⟩ ~Q ⟨(1st𝐶), (2nd𝐶)⟩))
98adantl 277 . 2 (((𝐴N𝐵N) ∧ 𝐶 ∈ (N × N)) → (DECID𝐴, 𝐵⟩ ~Q 𝐶DECID𝐴, 𝐵⟩ ~Q ⟨(1st𝐶), (2nd𝐶)⟩))
105, 9mpbird 167 1 (((𝐴N𝐵N) ∧ 𝐶 ∈ (N × N)) → DECID𝐴, 𝐵⟩ ~Q 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835  wcel 2175  cop 3635   class class class wbr 4043   × cxp 4671  cfv 5268  1st c1st 6214  2nd c2nd 6215  Ncnpi 7367   ~Q ceq 7374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-oadd 6496  df-omul 6497  df-ni 7399  df-mi 7401  df-enq 7442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator