| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqdc1 | GIF version | ||
| Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.) |
| Ref | Expression |
|---|---|
| enqdc1 | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ (N × N)) → DECID 〈𝐴, 𝐵〉 ~Q 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 6269 | . . . 4 ⊢ (𝐶 ∈ (N × N) → (1st ‘𝐶) ∈ N) | |
| 2 | xp2nd 6270 | . . . 4 ⊢ (𝐶 ∈ (N × N) → (2nd ‘𝐶) ∈ N) | |
| 3 | 1, 2 | jca 306 | . . 3 ⊢ (𝐶 ∈ (N × N) → ((1st ‘𝐶) ∈ N ∧ (2nd ‘𝐶) ∈ N)) |
| 4 | enqdc 7504 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ ((1st ‘𝐶) ∈ N ∧ (2nd ‘𝐶) ∈ N)) → DECID 〈𝐴, 𝐵〉 ~Q 〈(1st ‘𝐶), (2nd ‘𝐶)〉) | |
| 5 | 3, 4 | sylan2 286 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ (N × N)) → DECID 〈𝐴, 𝐵〉 ~Q 〈(1st ‘𝐶), (2nd ‘𝐶)〉) |
| 6 | 1st2nd2 6279 | . . . . 5 ⊢ (𝐶 ∈ (N × N) → 𝐶 = 〈(1st ‘𝐶), (2nd ‘𝐶)〉) | |
| 7 | 6 | breq2d 4066 | . . . 4 ⊢ (𝐶 ∈ (N × N) → (〈𝐴, 𝐵〉 ~Q 𝐶 ↔ 〈𝐴, 𝐵〉 ~Q 〈(1st ‘𝐶), (2nd ‘𝐶)〉)) |
| 8 | 7 | dcbid 840 | . . 3 ⊢ (𝐶 ∈ (N × N) → (DECID 〈𝐴, 𝐵〉 ~Q 𝐶 ↔ DECID 〈𝐴, 𝐵〉 ~Q 〈(1st ‘𝐶), (2nd ‘𝐶)〉)) |
| 9 | 8 | adantl 277 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ (N × N)) → (DECID 〈𝐴, 𝐵〉 ~Q 𝐶 ↔ DECID 〈𝐴, 𝐵〉 ~Q 〈(1st ‘𝐶), (2nd ‘𝐶)〉)) |
| 10 | 5, 9 | mpbird 167 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ (N × N)) → DECID 〈𝐴, 𝐵〉 ~Q 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 ∈ wcel 2177 〈cop 3641 class class class wbr 4054 × cxp 4686 ‘cfv 5285 1st c1st 6242 2nd c2nd 6243 Ncnpi 7415 ~Q ceq 7422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-oadd 6524 df-omul 6525 df-ni 7447 df-mi 7449 df-enq 7490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |