ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle Unicode version

Theorem iseqf1olemkle 10144
Description: Lemma for seq3f1o 10164. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1olemkle.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemkle.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemkle.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
Assertion
Ref Expression
iseqf1olemkle  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Distinct variable groups:    x, J    x, K    x, M
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzelz 9693 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
43adantr 272 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  ZZ )
54zred 9071 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  RR )
6 iseqf1olemkle.j . . . . . . . . 9  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
7 f1ocnv 5334 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
9 f1of 5321 . . . . . . . 8  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1110, 1ffvelrnd 5508 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
12 elfzelz 9693 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
1413adantr 272 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  ZZ )
1514zred 9071 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  RR )
16 simpr 109 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <  ( `' J `  K ) )
175, 15, 16ltled 7798 . 2  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
183zred 9071 . . 3  |-  ( ph  ->  K  e.  RR )
19 eqle 7772 . . 3  |-  ( ( K  e.  RR  /\  K  =  ( `' J `  K )
)  ->  K  <_  ( `' J `  K ) )
2018, 19sylan 279 . 2  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
216adantr 272 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
221adantr 272 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ( M ... N
) )
23 f1ocnvfv2 5631 . . . . 5  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
2421, 22, 23syl2anc 406 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  K )
25 fveq2 5373 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  ( J `  x )  =  ( J `  ( `' J `  K ) ) )
26 id 19 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  x  =  ( `' J `  K ) )
2725, 26eqeq12d 2127 . . . . 5  |-  ( x  =  ( `' J `  K )  ->  (
( J `  x
)  =  x  <->  ( J `  ( `' J `  K ) )  =  ( `' J `  K ) ) )
28 iseqf1olemkle.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
2928adantr 272 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
30 elfzuz 9689 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
3111, 30syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  M ) )
3231adantr 272 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
333adantr 272 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ZZ )
34 simpr 109 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  <  K )
35 elfzo2 9814 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M..^ K
)  <->  ( ( `' J `  K )  e.  ( ZZ>= `  M
)  /\  K  e.  ZZ  /\  ( `' J `  K )  <  K
) )
3632, 33, 34, 35syl3anbrc 1146 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( M..^ K
) )
3727, 29, 36rspcdva 2763 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  ( `' J `  K ) )
3824, 37eqtr3d 2147 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  =  ( `' J `  K ) )
3938, 20syldan 278 . 2  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  <_  ( `' J `  K ) )
40 ztri3or 8995 . . 3  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
413, 13, 40syl2anc 406 . 2  |-  ( ph  ->  ( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
4217, 20, 39, 41mpjao3dan 1266 1  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 942    = wceq 1312    e. wcel 1461   A.wral 2388   class class class wbr 3893   `'ccnv 4496   -->wf 5075   -1-1-onto->wf1o 5078   ` cfv 5079  (class class class)co 5726   RRcr 7540    < clt 7718    <_ cle 7719   ZZcz 8952   ZZ>=cuz 9222   ...cfz 9677  ..^cfzo 9806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-fz 9678  df-fzo 9807
This theorem is referenced by:  iseqf1olemqk  10154  seq3f1olemqsumkj  10158  seq3f1olemqsumk  10159
  Copyright terms: Public domain W3C validator