ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle Unicode version

Theorem iseqf1olemkle 10571
Description: Lemma for seq3f1o 10591. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1olemkle.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemkle.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemkle.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
Assertion
Ref Expression
iseqf1olemkle  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Distinct variable groups:    x, J    x, K    x, M
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzelz 10094 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
43adantr 276 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  ZZ )
54zred 9442 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  RR )
6 iseqf1olemkle.j . . . . . . . . 9  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
7 f1ocnv 5514 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
9 f1of 5501 . . . . . . . 8  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1110, 1ffvelcdmd 5695 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
12 elfzelz 10094 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
1413adantr 276 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  ZZ )
1514zred 9442 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  RR )
16 simpr 110 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <  ( `' J `  K ) )
175, 15, 16ltled 8140 . 2  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
183zred 9442 . . 3  |-  ( ph  ->  K  e.  RR )
19 eqle 8113 . . 3  |-  ( ( K  e.  RR  /\  K  =  ( `' J `  K )
)  ->  K  <_  ( `' J `  K ) )
2018, 19sylan 283 . 2  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
216adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
221adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ( M ... N
) )
23 f1ocnvfv2 5822 . . . . 5  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
2421, 22, 23syl2anc 411 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  K )
25 fveq2 5555 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  ( J `  x )  =  ( J `  ( `' J `  K ) ) )
26 id 19 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  x  =  ( `' J `  K ) )
2725, 26eqeq12d 2208 . . . . 5  |-  ( x  =  ( `' J `  K )  ->  (
( J `  x
)  =  x  <->  ( J `  ( `' J `  K ) )  =  ( `' J `  K ) ) )
28 iseqf1olemkle.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
2928adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
30 elfzuz 10090 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
3111, 30syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  M ) )
3231adantr 276 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
333adantr 276 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ZZ )
34 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  <  K )
35 elfzo2 10219 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M..^ K
)  <->  ( ( `' J `  K )  e.  ( ZZ>= `  M
)  /\  K  e.  ZZ  /\  ( `' J `  K )  <  K
) )
3632, 33, 34, 35syl3anbrc 1183 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( M..^ K
) )
3727, 29, 36rspcdva 2870 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  ( `' J `  K ) )
3824, 37eqtr3d 2228 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  =  ( `' J `  K ) )
3938, 20syldan 282 . 2  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  <_  ( `' J `  K ) )
40 ztri3or 9363 . . 3  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
413, 13, 40syl2anc 411 . 2  |-  ( ph  ->  ( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
4217, 20, 39, 41mpjao3dan 1318 1  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 979    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4030   `'ccnv 4659   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   RRcr 7873    < clt 8056    <_ cle 8057   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077  ..^cfzo 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  iseqf1olemqk  10581  seq3f1olemqsumkj  10585  seq3f1olemqsumk  10586
  Copyright terms: Public domain W3C validator