ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle Unicode version

Theorem iseqf1olemkle 10719
Description: Lemma for seq3f1o 10739. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1olemkle.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemkle.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemkle.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
Assertion
Ref Expression
iseqf1olemkle  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Distinct variable groups:    x, J    x, K    x, M
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzelz 10221 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
43adantr 276 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  ZZ )
54zred 9569 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  RR )
6 iseqf1olemkle.j . . . . . . . . 9  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
7 f1ocnv 5585 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
9 f1of 5572 . . . . . . . 8  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1110, 1ffvelcdmd 5771 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
12 elfzelz 10221 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
1413adantr 276 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  ZZ )
1514zred 9569 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  RR )
16 simpr 110 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <  ( `' J `  K ) )
175, 15, 16ltled 8265 . 2  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
183zred 9569 . . 3  |-  ( ph  ->  K  e.  RR )
19 eqle 8238 . . 3  |-  ( ( K  e.  RR  /\  K  =  ( `' J `  K )
)  ->  K  <_  ( `' J `  K ) )
2018, 19sylan 283 . 2  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
216adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
221adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ( M ... N
) )
23 f1ocnvfv2 5902 . . . . 5  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
2421, 22, 23syl2anc 411 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  K )
25 fveq2 5627 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  ( J `  x )  =  ( J `  ( `' J `  K ) ) )
26 id 19 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  x  =  ( `' J `  K ) )
2725, 26eqeq12d 2244 . . . . 5  |-  ( x  =  ( `' J `  K )  ->  (
( J `  x
)  =  x  <->  ( J `  ( `' J `  K ) )  =  ( `' J `  K ) ) )
28 iseqf1olemkle.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
2928adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
30 elfzuz 10217 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
3111, 30syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  M ) )
3231adantr 276 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
333adantr 276 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ZZ )
34 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  <  K )
35 elfzo2 10346 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M..^ K
)  <->  ( ( `' J `  K )  e.  ( ZZ>= `  M
)  /\  K  e.  ZZ  /\  ( `' J `  K )  <  K
) )
3632, 33, 34, 35syl3anbrc 1205 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( M..^ K
) )
3727, 29, 36rspcdva 2912 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  ( `' J `  K ) )
3824, 37eqtr3d 2264 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  =  ( `' J `  K ) )
3938, 20syldan 282 . 2  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  <_  ( `' J `  K ) )
40 ztri3or 9489 . . 3  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
413, 13, 40syl2anc 411 . 2  |-  ( ph  ->  ( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
4217, 20, 39, 41mpjao3dan 1341 1  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 1001    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4083   `'ccnv 4718   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   RRcr 7998    < clt 8181    <_ cle 8182   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204  ..^cfzo 10338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by:  iseqf1olemqk  10729  seq3f1olemqsumkj  10733  seq3f1olemqsumk  10734
  Copyright terms: Public domain W3C validator