ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemkle Unicode version

Theorem iseqf1olemkle 10419
Description: Lemma for seq3f1o 10439. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemkle.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1olemkle.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemkle.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemkle.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
Assertion
Ref Expression
iseqf1olemkle  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Distinct variable groups:    x, J    x, K    x, M
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem iseqf1olemkle
StepHypRef Expression
1 iseqf1olemkle.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzelz 9960 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
43adantr 274 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  ZZ )
54zred 9313 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  e.  RR )
6 iseqf1olemkle.j . . . . . . . . 9  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
7 f1ocnv 5445 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
9 f1of 5432 . . . . . . . 8  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1110, 1ffvelrnd 5621 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
12 elfzelz 9960 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
1413adantr 274 . . . 4  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  ZZ )
1514zred 9313 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  ( `' J `  K )  e.  RR )
16 simpr 109 . . 3  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <  ( `' J `  K ) )
175, 15, 16ltled 8017 . 2  |-  ( (
ph  /\  K  <  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
183zred 9313 . . 3  |-  ( ph  ->  K  e.  RR )
19 eqle 7990 . . 3  |-  ( ( K  e.  RR  /\  K  =  ( `' J `  K )
)  ->  K  <_  ( `' J `  K ) )
2018, 19sylan 281 . 2  |-  ( (
ph  /\  K  =  ( `' J `  K ) )  ->  K  <_  ( `' J `  K ) )
216adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
221adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ( M ... N
) )
23 f1ocnvfv2 5746 . . . . 5  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
2421, 22, 23syl2anc 409 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  K )
25 fveq2 5486 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  ( J `  x )  =  ( J `  ( `' J `  K ) ) )
26 id 19 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  x  =  ( `' J `  K ) )
2725, 26eqeq12d 2180 . . . . 5  |-  ( x  =  ( `' J `  K )  ->  (
( J `  x
)  =  x  <->  ( J `  ( `' J `  K ) )  =  ( `' J `  K ) ) )
28 iseqf1olemkle.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
2928adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
30 elfzuz 9956 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
3111, 30syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  M ) )
3231adantr 274 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
333adantr 274 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ZZ )
34 simpr 109 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  <  K )
35 elfzo2 10085 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M..^ K
)  <->  ( ( `' J `  K )  e.  ( ZZ>= `  M
)  /\  K  e.  ZZ  /\  ( `' J `  K )  <  K
) )
3632, 33, 34, 35syl3anbrc 1171 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( M..^ K
) )
3727, 29, 36rspcdva 2835 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  ( `' J `  K ) )
3824, 37eqtr3d 2200 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  =  ( `' J `  K ) )
3938, 20syldan 280 . 2  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  <_  ( `' J `  K ) )
40 ztri3or 9234 . . 3  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
413, 13, 40syl2anc 409 . 2  |-  ( ph  ->  ( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
4217, 20, 39, 41mpjao3dan 1297 1  |-  ( ph  ->  K  <_  ( `' J `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 967    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982   `'ccnv 4603   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   RRcr 7752    < clt 7933    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by:  iseqf1olemqk  10429  seq3f1olemqsumkj  10433  seq3f1olemqsumk  10434
  Copyright terms: Public domain W3C validator