ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv GIF version

Theorem f1ocnvfv 5847
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
f1ocnvfv ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfv
StepHypRef Expression
1 fveq2 5575 . . 3 (𝐷 = (𝐹𝐶) → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
21eqcoms 2207 . 2 ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
3 f1ocnvfv1 5845 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
43eqeq2d 2216 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐷) = (𝐹‘(𝐹𝐶)) ↔ (𝐹𝐷) = 𝐶))
52, 4imbitrid 154 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  ccnv 4673  1-1-ontowf1o 5269  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278
This theorem is referenced by:  f1ocnvfvb  5848  f1oiso2  5895  frecuzrdgtcl  10555  frecuzrdgsuc  10557  frecuzrdgfunlem  10562  frecfzennn  10569  0tonninf  10583  1tonninf  10584  seqf1oglem1  10662  seqf1oglem2  10663  sqpweven  12468  2sqpwodd  12469  mhmf1o  13273  ghmf1o  13582  012of  15892  isomninnlem  15931  iswomninnlem  15950  ismkvnnlem  15953
  Copyright terms: Public domain W3C validator