| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv | GIF version | ||
| Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 | . . 3 ⊢ (𝐷 = (𝐹‘𝐶) → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) | |
| 2 | 1 | eqcoms 2199 | . 2 ⊢ ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) |
| 3 | f1ocnvfv1 5824 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) | |
| 4 | 3 | eqeq2d 2208 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶)) ↔ (◡𝐹‘𝐷) = 𝐶)) |
| 5 | 2, 4 | imbitrid 154 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ◡ccnv 4662 –1-1-onto→wf1o 5257 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 |
| This theorem is referenced by: f1ocnvfvb 5827 f1oiso2 5874 frecuzrdgtcl 10504 frecuzrdgsuc 10506 frecuzrdgfunlem 10511 frecfzennn 10518 0tonninf 10532 1tonninf 10533 seqf1oglem1 10611 seqf1oglem2 10612 sqpweven 12343 2sqpwodd 12344 mhmf1o 13102 ghmf1o 13405 012of 15640 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 |
| Copyright terms: Public domain | W3C validator |