ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv GIF version

Theorem f1ocnvfv 5801
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
f1ocnvfv ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfv
StepHypRef Expression
1 fveq2 5534 . . 3 (𝐷 = (𝐹𝐶) → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
21eqcoms 2192 . 2 ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
3 f1ocnvfv1 5799 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
43eqeq2d 2201 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐷) = (𝐹‘(𝐹𝐶)) ↔ (𝐹𝐷) = 𝐶))
52, 4imbitrid 154 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  ccnv 4643  1-1-ontowf1o 5234  cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243
This theorem is referenced by:  f1ocnvfvb  5802  f1oiso2  5849  frecuzrdgtcl  10445  frecuzrdgsuc  10447  frecuzrdgfunlem  10452  frecfzennn  10459  0tonninf  10472  1tonninf  10473  sqpweven  12210  2sqpwodd  12211  mhmf1o  12937  ghmf1o  13231  012of  15224  isomninnlem  15257  iswomninnlem  15276  ismkvnnlem  15279
  Copyright terms: Public domain W3C validator