![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fidcenumlemim | GIF version |
Description: Lemma for fidcenum 6973. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
Ref | Expression |
---|---|
fidcenumlemim | ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidceq 6887 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → DECID 𝑥 = 𝑦) | |
2 | 1 | 3expb 1206 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → DECID 𝑥 = 𝑦) |
3 | 2 | ralrimivva 2572 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
4 | isfi 6779 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
5 | ensym 6799 | . . . . 5 ⊢ (𝐴 ≈ 𝑛 → 𝑛 ≈ 𝐴) | |
6 | bren 6765 | . . . . . 6 ⊢ (𝑛 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑛–1-1-onto→𝐴) | |
7 | f1ofo 5483 | . . . . . . 7 ⊢ (𝑓:𝑛–1-1-onto→𝐴 → 𝑓:𝑛–onto→𝐴) | |
8 | 7 | eximi 1611 | . . . . . 6 ⊢ (∃𝑓 𝑓:𝑛–1-1-onto→𝐴 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
9 | 6, 8 | sylbi 121 | . . . . 5 ⊢ (𝑛 ≈ 𝐴 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
10 | 5, 9 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝑛 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
11 | 10 | reximi 2587 | . . 3 ⊢ (∃𝑛 ∈ ω 𝐴 ≈ 𝑛 → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴) |
12 | 4, 11 | sylbi 121 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴) |
13 | 3, 12 | jca 306 | 1 ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 class class class wbr 4018 ωcom 4604 –onto→wfo 5229 –1-1-onto→wf1o 5230 ≈ cen 6756 Fincfn 6758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-er 6553 df-en 6759 df-fin 6761 |
This theorem is referenced by: fidcenum 6973 |
Copyright terms: Public domain | W3C validator |