![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fidcenumlemim | GIF version |
Description: Lemma for fidcenum 6745. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
Ref | Expression |
---|---|
fidcenumlemim | ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidceq 6665 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → DECID 𝑥 = 𝑦) | |
2 | 1 | 3expb 1147 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → DECID 𝑥 = 𝑦) |
3 | 2 | ralrimivva 2467 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
4 | isfi 6558 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
5 | ensym 6578 | . . . . 5 ⊢ (𝐴 ≈ 𝑛 → 𝑛 ≈ 𝐴) | |
6 | bren 6544 | . . . . . 6 ⊢ (𝑛 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑛–1-1-onto→𝐴) | |
7 | f1ofo 5295 | . . . . . . 7 ⊢ (𝑓:𝑛–1-1-onto→𝐴 → 𝑓:𝑛–onto→𝐴) | |
8 | 7 | eximi 1543 | . . . . . 6 ⊢ (∃𝑓 𝑓:𝑛–1-1-onto→𝐴 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
9 | 6, 8 | sylbi 120 | . . . . 5 ⊢ (𝑛 ≈ 𝐴 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
10 | 5, 9 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝑛 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
11 | 10 | reximi 2482 | . . 3 ⊢ (∃𝑛 ∈ ω 𝐴 ≈ 𝑛 → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴) |
12 | 4, 11 | sylbi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴) |
13 | 3, 12 | jca 301 | 1 ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 783 ∃wex 1433 ∈ wcel 1445 ∀wral 2370 ∃wrex 2371 class class class wbr 3867 ωcom 4433 –onto→wfo 5047 –1-1-onto→wf1o 5048 ≈ cen 6535 Fincfn 6537 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-er 6332 df-en 6538 df-fin 6540 |
This theorem is referenced by: fidcenum 6745 |
Copyright terms: Public domain | W3C validator |