| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidcenumlemim | GIF version | ||
| Description: Lemma for fidcenum 7084. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
| Ref | Expression |
|---|---|
| fidcenumlemim | ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidceq 6992 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → DECID 𝑥 = 𝑦) | |
| 2 | 1 | 3expb 1207 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → DECID 𝑥 = 𝑦) |
| 3 | 2 | ralrimivva 2590 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 4 | isfi 6875 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 5 | ensym 6896 | . . . . 5 ⊢ (𝐴 ≈ 𝑛 → 𝑛 ≈ 𝐴) | |
| 6 | bren 6858 | . . . . . 6 ⊢ (𝑛 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑛–1-1-onto→𝐴) | |
| 7 | f1ofo 5551 | . . . . . . 7 ⊢ (𝑓:𝑛–1-1-onto→𝐴 → 𝑓:𝑛–onto→𝐴) | |
| 8 | 7 | eximi 1624 | . . . . . 6 ⊢ (∃𝑓 𝑓:𝑛–1-1-onto→𝐴 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
| 9 | 6, 8 | sylbi 121 | . . . . 5 ⊢ (𝑛 ≈ 𝐴 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
| 10 | 5, 9 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝑛 → ∃𝑓 𝑓:𝑛–onto→𝐴) |
| 11 | 10 | reximi 2605 | . . 3 ⊢ (∃𝑛 ∈ ω 𝐴 ≈ 𝑛 → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴) |
| 12 | 4, 11 | sylbi 121 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴) |
| 13 | 3, 12 | jca 306 | 1 ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 ∃wex 1516 ∈ wcel 2178 ∀wral 2486 ∃wrex 2487 class class class wbr 4059 ωcom 4656 –onto→wfo 5288 –1-1-onto→wf1o 5289 ≈ cen 6848 Fincfn 6850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 |
| This theorem is referenced by: fidcenum 7084 |
| Copyright terms: Public domain | W3C validator |