ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemim GIF version

Theorem fidcenumlemim 7054
Description: Lemma for fidcenum 7058. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenumlemim (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑥,𝐴,𝑦

Proof of Theorem fidcenumlemim
StepHypRef Expression
1 fidceq 6966 . . . 4 ((𝐴 ∈ Fin ∧ 𝑥𝐴𝑦𝐴) → DECID 𝑥 = 𝑦)
213expb 1207 . . 3 ((𝐴 ∈ Fin ∧ (𝑥𝐴𝑦𝐴)) → DECID 𝑥 = 𝑦)
32ralrimivva 2588 . 2 (𝐴 ∈ Fin → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4 isfi 6852 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
5 ensym 6873 . . . . 5 (𝐴𝑛𝑛𝐴)
6 bren 6835 . . . . . 6 (𝑛𝐴 ↔ ∃𝑓 𝑓:𝑛1-1-onto𝐴)
7 f1ofo 5529 . . . . . . 7 (𝑓:𝑛1-1-onto𝐴𝑓:𝑛onto𝐴)
87eximi 1623 . . . . . 6 (∃𝑓 𝑓:𝑛1-1-onto𝐴 → ∃𝑓 𝑓:𝑛onto𝐴)
96, 8sylbi 121 . . . . 5 (𝑛𝐴 → ∃𝑓 𝑓:𝑛onto𝐴)
105, 9syl 14 . . . 4 (𝐴𝑛 → ∃𝑓 𝑓:𝑛onto𝐴)
1110reximi 2603 . . 3 (∃𝑛 ∈ ω 𝐴𝑛 → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴)
124, 11sylbi 121 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴)
133, 12jca 306 1 (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  wex 1515  wcel 2176  wral 2484  wrex 2485   class class class wbr 4044  ωcom 4638  ontowfo 5269  1-1-ontowf1o 5270  cen 6825  Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6620  df-en 6828  df-fin 6830
This theorem is referenced by:  fidcenum  7058
  Copyright terms: Public domain W3C validator