ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemim GIF version

Theorem fidcenumlemim 6969
Description: Lemma for fidcenum 6973. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenumlemim (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑥,𝐴,𝑦

Proof of Theorem fidcenumlemim
StepHypRef Expression
1 fidceq 6887 . . . 4 ((𝐴 ∈ Fin ∧ 𝑥𝐴𝑦𝐴) → DECID 𝑥 = 𝑦)
213expb 1206 . . 3 ((𝐴 ∈ Fin ∧ (𝑥𝐴𝑦𝐴)) → DECID 𝑥 = 𝑦)
32ralrimivva 2572 . 2 (𝐴 ∈ Fin → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4 isfi 6779 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
5 ensym 6799 . . . . 5 (𝐴𝑛𝑛𝐴)
6 bren 6765 . . . . . 6 (𝑛𝐴 ↔ ∃𝑓 𝑓:𝑛1-1-onto𝐴)
7 f1ofo 5483 . . . . . . 7 (𝑓:𝑛1-1-onto𝐴𝑓:𝑛onto𝐴)
87eximi 1611 . . . . . 6 (∃𝑓 𝑓:𝑛1-1-onto𝐴 → ∃𝑓 𝑓:𝑛onto𝐴)
96, 8sylbi 121 . . . . 5 (𝑛𝐴 → ∃𝑓 𝑓:𝑛onto𝐴)
105, 9syl 14 . . . 4 (𝐴𝑛 → ∃𝑓 𝑓:𝑛onto𝐴)
1110reximi 2587 . . 3 (∃𝑛 ∈ ω 𝐴𝑛 → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴)
124, 11sylbi 121 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴)
133, 12jca 306 1 (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  wex 1503  wcel 2160  wral 2468  wrex 2469   class class class wbr 4018  ωcom 4604  ontowfo 5229  1-1-ontowf1o 5230  cen 6756  Fincfn 6758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-er 6553  df-en 6759  df-fin 6761
This theorem is referenced by:  fidcenum  6973
  Copyright terms: Public domain W3C validator