ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmpt1f Unicode version

Theorem cncfmpt1f 14988
Description: Composition of continuous functions.  -cn-> analogue of cnmpt11f 14674. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
cncfmpt1f.2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
cncfmpt1f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, F    ph, x    x, X
Allowed substitution hint:    A( x)

Proof of Theorem cncfmpt1f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2 cncff 14967 . . . . 5  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  A ) : X --> CC )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
4 eqid 2204 . . . . 5  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
54fmpt 5724 . . . 4  |-  ( A. x  e.  X  A  e.  CC  <->  ( x  e.  X  |->  A ) : X --> CC )
63, 5sylibr 134 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  CC )
7 eqidd 2205 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
8 cncfmpt1f.1 . . . . 5  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
9 cncff 14967 . . . . 5  |-  ( F  e.  ( CC -cn-> CC )  ->  F : CC
--> CC )
108, 9syl 14 . . . 4  |-  ( ph  ->  F : CC --> CC )
1110feqmptd 5626 . . 3  |-  ( ph  ->  F  =  ( y  e.  CC  |->  ( F `
 y ) ) )
12 fveq2 5570 . . 3  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
136, 7, 11, 12fmptcof 5741 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  ( F `  A ) ) )
141, 8cncfco 14981 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  e.  ( X -cn-> CC ) )
1513, 14eqeltrrd 2282 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   A.wral 2483    |-> cmpt 4104    o. ccom 4677   -->wf 5264   ` cfv 5268  (class class class)co 5934   CCcc 7905   -cn->ccncf 14960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-map 6727  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-2 9077  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-cncf 14961
This theorem is referenced by:  maxcncf  15005  mincncf  15006  sincn  15159  coscn  15160
  Copyright terms: Public domain W3C validator