ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coscn Unicode version

Theorem coscn 15006
Description: Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
coscn  |-  cos  e.  ( CC -cn-> CC )

Proof of Theorem coscn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cos 11816 . 2  |-  cos  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
2 eqid 2196 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
32addcncntop 14798 . . . . . . . . 9  |-  +  e.  ( ( ( MetOpen `  ( abs  o.  -  )
)  tX  ( MetOpen `  ( abs  o.  -  )
) )  Cn  ( MetOpen
`  ( abs  o.  -  ) ) )
43a1i 9 . . . . . . . 8  |-  ( T. 
->  +  e.  ( ( ( MetOpen `  ( abs  o. 
-  ) )  tX  ( MetOpen `  ( abs  o. 
-  ) ) )  Cn  ( MetOpen `  ( abs  o.  -  ) ) ) )
5 efcn 15004 . . . . . . . . . 10  |-  exp  e.  ( CC -cn-> CC )
65a1i 9 . . . . . . . . 9  |-  ( T. 
->  exp  e.  ( CC
-cn-> CC ) )
7 ax-icn 7974 . . . . . . . . . 10  |-  _i  e.  CC
8 eqid 2196 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( _i  x.  x ) )  =  ( x  e.  CC  |->  ( _i  x.  x ) )
98mulc1cncf 14825 . . . . . . . . . 10  |-  ( _i  e.  CC  ->  (
x  e.  CC  |->  ( _i  x.  x ) )  e.  ( CC
-cn-> CC ) )
107, 9mp1i 10 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  CC  |->  ( _i  x.  x
) )  e.  ( CC -cn-> CC ) )
116, 10cncfmpt1f 14834 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
12 negicn 8227 . . . . . . . . . 10  |-  -u _i  e.  CC
13 eqid 2196 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( -u _i  x.  x ) )  =  ( x  e.  CC  |->  ( -u _i  x.  x ) )
1413mulc1cncf 14825 . . . . . . . . . 10  |-  ( -u _i  e.  CC  ->  (
x  e.  CC  |->  (
-u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
1512, 14mp1i 10 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  CC  |->  ( -u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
166, 15cncfmpt1f 14834 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
172, 4, 11, 16cncfmpt2fcntop 14835 . . . . . . 7  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC ) )
18 cncff 14813 . . . . . . 7  |-  ( ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
1917, 18syl 14 . . . . . 6  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
20 eqid 2196 . . . . . . 7  |-  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  +  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) )
2120fmpt 5712 . . . . . 6  |-  ( A. x  e.  CC  (
( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  e.  CC  <->  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
2219, 21sylibr 134 . . . . 5  |-  ( T. 
->  A. x  e.  CC  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
23 eqidd 2197 . . . . 5  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  +  ( exp `  ( -u _i  x.  x ) ) ) ) )
24 eqidd 2197 . . . . 5  |-  ( T. 
->  ( y  e.  CC  |->  ( y  /  2
) )  =  ( y  e.  CC  |->  ( y  /  2 ) ) )
25 oveq1 5929 . . . . 5  |-  ( y  =  ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  ->  ( y  /  2 )  =  ( ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
2622, 23, 24, 25fmptcof 5729 . . . 4  |-  ( T. 
->  ( ( y  e.  CC  |->  ( y  / 
2 ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) )
27 2cn 9061 . . . . . . 7  |-  2  e.  CC
28 2ap0 9083 . . . . . . 7  |-  2 #  0
29 eqid 2196 . . . . . . . 8  |-  ( y  e.  CC  |->  ( y  /  2 ) )  =  ( y  e.  CC  |->  ( y  / 
2 ) )
3029divccncfap 14826 . . . . . . 7  |-  ( ( 2  e.  CC  /\  2 #  0 )  ->  (
y  e.  CC  |->  ( y  /  2 ) )  e.  ( CC
-cn-> CC ) )
3127, 28, 30mp2an 426 . . . . . 6  |-  ( y  e.  CC  |->  ( y  /  2 ) )  e.  ( CC -cn-> CC )
3231a1i 9 . . . . 5  |-  ( T. 
->  ( y  e.  CC  |->  ( y  /  2
) )  e.  ( CC -cn-> CC ) )
3317, 32cncfco 14827 . . . 4  |-  ( T. 
->  ( ( y  e.  CC  |->  ( y  / 
2 ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) ) )  e.  ( CC -cn-> CC ) )
3426, 33eqeltrrd 2274 . . 3  |-  ( T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )  e.  ( CC
-cn-> CC ) )
3534mptru 1373 . 2  |-  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )  e.  ( CC -cn-> CC )
361, 35eqeltri 2269 1  |-  cos  e.  ( CC -cn-> CC )
Colors of variables: wff set class
Syntax hints:   T. wtru 1365    e. wcel 2167   A.wral 2475   class class class wbr 4033    |-> cmpt 4094    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   _ici 7881    + caddc 7882    x. cmul 7884    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699   2c2 9041   abscabs 11162   expce 11807   cosccos 11810   MetOpencmopn 14097    Cn ccn 14421    tX ctx 14488   -cn->ccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-cos 11816  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  cosz12  15016  ioocosf1o  15090
  Copyright terms: Public domain W3C validator