ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq2 Unicode version

Theorem seq3feq2 10362
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
seq3fveq2.2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
seq3fveq2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3fveq2.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
seq3fveq2.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3feq2.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
seq3feq2  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  K )
)  =  seq K
(  .+  ,  G
) )
Distinct variable groups:    x, k, y, F    k, G, x, y    k, K, x, y    ph, k, x, y   
k, M, x, y    .+ , k, x, y    S, k, x, y

Proof of Theorem seq3feq2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2157 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3fveq2.1 . . . . . 6  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
3 eluzel2 9438 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
42, 3syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
5 seq3fveq2.f . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
6 seq3fveq2.pl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
71, 4, 5, 6seqf 10353 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
87ffnd 5319 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
9 uzss 9453 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  C_  ( ZZ>=
`  M ) )
102, 9syl 14 . . 3  |-  ( ph  ->  ( ZZ>= `  K )  C_  ( ZZ>= `  M )
)
11 fnssres 5282 . . 3  |-  ( (  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M )  /\  ( ZZ>= `  K )  C_  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) )  Fn  ( ZZ>= `  K
) )
128, 10, 11syl2anc 409 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  K )
)  Fn  ( ZZ>= `  K ) )
13 eqid 2157 . . . 4  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
14 eluzelz 9442 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
152, 14syl 14 . . . 4  |-  ( ph  ->  K  e.  ZZ )
16 seq3fveq2.g . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
1713, 15, 16, 6seqf 10353 . . 3  |-  ( ph  ->  seq K (  .+  ,  G ) : (
ZZ>= `  K ) --> S )
1817ffnd 5319 . 2  |-  ( ph  ->  seq K (  .+  ,  G )  Fn  ( ZZ>=
`  K ) )
19 fvres 5491 . . . 4  |-  ( z  e.  ( ZZ>= `  K
)  ->  ( (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) ) `
 z )  =  (  seq M ( 
.+  ,  F ) `
 z ) )
2019adantl 275 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  ( (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) ) `
 z )  =  (  seq M ( 
.+  ,  F ) `
 z ) )
212adantr 274 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
22 seq3fveq2.2 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
2322adantr 274 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( G `
 K ) )
245adantlr 469 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2516adantlr 469 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
266adantlr 469 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
27 simpr 109 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  z  e.  ( ZZ>= `  K )
)
28 elfzuz 9917 . . . . . 6  |-  ( k  e.  ( ( K  +  1 ) ... z )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
29 seq3feq2.4 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )
3028, 29sylan2 284 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... z
) )  ->  ( F `  k )  =  ( G `  k ) )
3130adantlr 469 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  k  e.  ( ( K  + 
1 ) ... z
) )  ->  ( F `  k )  =  ( G `  k ) )
3221, 23, 24, 25, 26, 27, 31seq3fveq2 10361 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq K (  .+  ,  G ) `  z
) )
3320, 32eqtrd 2190 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  ( (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) ) `
 z )  =  (  seq K ( 
.+  ,  G ) `
 z ) )
3412, 18, 33eqfnfvd 5567 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  K )
)  =  seq K
(  .+  ,  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128    C_ wss 3102    |` cres 4587    Fn wfn 5164   ` cfv 5169  (class class class)co 5821   1c1 7727    + caddc 7729   ZZcz 9161   ZZ>=cuz 9433   ...cfz 9905    seqcseq 10337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162  df-uz 9434  df-fz 9906  df-seqfrec 10338
This theorem is referenced by:  seq3id  10400
  Copyright terms: Public domain W3C validator