Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3feq2 | Unicode version |
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
Ref | Expression |
---|---|
seq3fveq2.1 | |
seq3fveq2.2 | |
seq3fveq2.f | |
seq3fveq2.g | |
seq3fveq2.pl | |
seq3feq2.4 |
Ref | Expression |
---|---|
seq3feq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . . . 5 | |
2 | seq3fveq2.1 | . . . . . 6 | |
3 | eluzel2 9438 | . . . . . 6 | |
4 | 2, 3 | syl 14 | . . . . 5 |
5 | seq3fveq2.f | . . . . 5 | |
6 | seq3fveq2.pl | . . . . 5 | |
7 | 1, 4, 5, 6 | seqf 10353 | . . . 4 |
8 | 7 | ffnd 5319 | . . 3 |
9 | uzss 9453 | . . . 4 | |
10 | 2, 9 | syl 14 | . . 3 |
11 | fnssres 5282 | . . 3 | |
12 | 8, 10, 11 | syl2anc 409 | . 2 |
13 | eqid 2157 | . . . 4 | |
14 | eluzelz 9442 | . . . . 5 | |
15 | 2, 14 | syl 14 | . . . 4 |
16 | seq3fveq2.g | . . . 4 | |
17 | 13, 15, 16, 6 | seqf 10353 | . . 3 |
18 | 17 | ffnd 5319 | . 2 |
19 | fvres 5491 | . . . 4 | |
20 | 19 | adantl 275 | . . 3 |
21 | 2 | adantr 274 | . . . 4 |
22 | seq3fveq2.2 | . . . . 5 | |
23 | 22 | adantr 274 | . . . 4 |
24 | 5 | adantlr 469 | . . . 4 |
25 | 16 | adantlr 469 | . . . 4 |
26 | 6 | adantlr 469 | . . . 4 |
27 | simpr 109 | . . . 4 | |
28 | elfzuz 9917 | . . . . . 6 | |
29 | seq3feq2.4 | . . . . . 6 | |
30 | 28, 29 | sylan2 284 | . . . . 5 |
31 | 30 | adantlr 469 | . . . 4 |
32 | 21, 23, 24, 25, 26, 27, 31 | seq3fveq2 10361 | . . 3 |
33 | 20, 32 | eqtrd 2190 | . 2 |
34 | 12, 18, 33 | eqfnfvd 5567 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wss 3102 cres 4587 wfn 5164 cfv 5169 (class class class)co 5821 c1 7727 caddc 7729 cz 9161 cuz 9433 cfz 9905 cseq 10337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-frec 6335 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-n0 9085 df-z 9162 df-uz 9434 df-fz 9906 df-seqfrec 10338 |
This theorem is referenced by: seq3id 10400 |
Copyright terms: Public domain | W3C validator |