ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq2 Unicode version

Theorem seq3feq2 10658
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
seq3fveq2.2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
seq3fveq2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3fveq2.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
seq3fveq2.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3feq2.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
seq3feq2  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  K )
)  =  seq K
(  .+  ,  G
) )
Distinct variable groups:    x, k, y, F    k, G, x, y    k, K, x, y    ph, k, x, y   
k, M, x, y    .+ , k, x, y    S, k, x, y

Proof of Theorem seq3feq2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3fveq2.1 . . . . . 6  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
3 eluzel2 9688 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
42, 3syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
5 seq3fveq2.f . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
6 seq3fveq2.pl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
71, 4, 5, 6seqf 10646 . . . 4  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
87ffnd 5446 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
9 uzss 9704 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  C_  ( ZZ>=
`  M ) )
102, 9syl 14 . . 3  |-  ( ph  ->  ( ZZ>= `  K )  C_  ( ZZ>= `  M )
)
11 fnssres 5408 . . 3  |-  ( (  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M )  /\  ( ZZ>= `  K )  C_  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) )  Fn  ( ZZ>= `  K
) )
128, 10, 11syl2anc 411 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  K )
)  Fn  ( ZZ>= `  K ) )
13 eqid 2207 . . . 4  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
14 eluzelz 9692 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
152, 14syl 14 . . . 4  |-  ( ph  ->  K  e.  ZZ )
16 seq3fveq2.g . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
1713, 15, 16, 6seqf 10646 . . 3  |-  ( ph  ->  seq K (  .+  ,  G ) : (
ZZ>= `  K ) --> S )
1817ffnd 5446 . 2  |-  ( ph  ->  seq K (  .+  ,  G )  Fn  ( ZZ>=
`  K ) )
19 fvres 5623 . . . 4  |-  ( z  e.  ( ZZ>= `  K
)  ->  ( (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) ) `
 z )  =  (  seq M ( 
.+  ,  F ) `
 z ) )
2019adantl 277 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  ( (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) ) `
 z )  =  (  seq M ( 
.+  ,  F ) `
 z ) )
212adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
22 seq3fveq2.2 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
2322adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( G `
 K ) )
245adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2516adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
266adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
27 simpr 110 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  z  e.  ( ZZ>= `  K )
)
28 elfzuz 10178 . . . . . 6  |-  ( k  e.  ( ( K  +  1 ) ... z )  ->  k  e.  ( ZZ>= `  ( K  +  1 ) ) )
29 seq3feq2.4 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )
3028, 29sylan2 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... z
) )  ->  ( F `  k )  =  ( G `  k ) )
3130adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  K )
)  /\  k  e.  ( ( K  + 
1 ) ... z
) )  ->  ( F `  k )  =  ( G `  k ) )
3221, 23, 24, 25, 26, 27, 31seq3fveq2 10657 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq K (  .+  ,  G ) `  z
) )
3320, 32eqtrd 2240 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  K )
)  ->  ( (  seq M (  .+  ,  F )  |`  ( ZZ>=
`  K ) ) `
 z )  =  (  seq K ( 
.+  ,  G ) `
 z ) )
3412, 18, 33eqfnfvd 5703 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  K )
)  =  seq K
(  .+  ,  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174    |` cres 4695    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630
This theorem is referenced by:  seq3id  10707
  Copyright terms: Public domain W3C validator