ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvval2 Unicode version

Theorem grpinvval2 13602
Description: A df-neg 8308-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubcl.b  |-  B  =  ( Base `  G
)
grpsubcl.m  |-  .-  =  ( -g `  G )
grpinvsub.n  |-  N  =  ( invg `  G )
grpinvval2.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpinvval2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  =  (  .0.  .-  X ) )

Proof of Theorem grpinvval2
StepHypRef Expression
1 grpsubcl.b . . . 4  |-  B  =  ( Base `  G
)
2 grpinvval2.z . . . 4  |-  .0.  =  ( 0g `  G )
31, 2grpidcl 13548 . . 3  |-  ( G  e.  Grp  ->  .0.  e.  B )
4 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
5 grpinvsub.n . . . 4  |-  N  =  ( invg `  G )
6 grpsubcl.m . . . 4  |-  .-  =  ( -g `  G )
71, 4, 5, 6grpsubval 13565 . . 3  |-  ( (  .0.  e.  B  /\  X  e.  B )  ->  (  .0.  .-  X
)  =  (  .0.  ( +g  `  G
) ( N `  X ) ) )
83, 7sylan 283 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .-  X
)  =  (  .0.  ( +g  `  G
) ( N `  X ) ) )
91, 5grpinvcl 13567 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
101, 4, 2grplid 13550 . . 3  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
(  .0.  ( +g  `  G ) ( N `
 X ) )  =  ( N `  X ) )
119, 10syldan 282 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  ( +g  `  G ) ( N `
 X ) )  =  ( N `  X ) )
128, 11eqtr2d 2263 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  =  (  .0.  .-  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   0gc0g 13275   Grpcgrp 13519   invgcminusg 13520   -gcsg 13521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-sbg 13524
This theorem is referenced by:  grpsubadd0sub  13606
  Copyright terms: Public domain W3C validator