ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvval2 GIF version

Theorem grpinvval2 13158
Description: A df-neg 8195-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
grpinvsub.n 𝑁 = (invg𝐺)
grpinvval2.z 0 = (0g𝐺)
Assertion
Ref Expression
grpinvval2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))

Proof of Theorem grpinvval2
StepHypRef Expression
1 grpsubcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinvval2.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 13104 . . 3 (𝐺 ∈ Grp → 0𝐵)
4 eqid 2193 . . . 4 (+g𝐺) = (+g𝐺)
5 grpinvsub.n . . . 4 𝑁 = (invg𝐺)
6 grpsubcl.m . . . 4 = (-g𝐺)
71, 4, 5, 6grpsubval 13121 . . 3 (( 0𝐵𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
83, 7sylan 283 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 𝑋) = ( 0 (+g𝐺)(𝑁𝑋)))
91, 5grpinvcl 13123 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
101, 4, 2grplid 13106 . . 3 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
119, 10syldan 282 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)(𝑁𝑋)) = (𝑁𝑋))
128, 11eqtr2d 2227 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Grpcgrp 13075  invgcminusg 13076  -gcsg 13077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080
This theorem is referenced by:  grpsubadd0sub  13162
  Copyright terms: Public domain W3C validator