Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grppncan | Unicode version |
Description: Cancellation law for subtraction (pncan 8129 analog). (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
grpsubadd.b | |
grpsubadd.p | |
grpsubadd.m |
Ref | Expression |
---|---|
grppncan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 993 | . . 3 | |
2 | simp2 994 | . . 3 | |
3 | simp3 995 | . . 3 | |
4 | grpsubadd.b | . . . 4 | |
5 | grpsubadd.p | . . . 4 | |
6 | grpsubadd.m | . . . 4 | |
7 | 4, 5, 6 | grpaddsubass 12811 | . . 3 |
8 | 1, 2, 3, 3, 7 | syl13anc 1236 | . 2 |
9 | eqid 2171 | . . . . 5 | |
10 | 4, 9, 6 | grpsubid 12805 | . . . 4 |
11 | 10 | oveq2d 5873 | . . 3 |
12 | 11 | 3adant2 1012 | . 2 |
13 | 4, 5, 9 | grprid 12759 | . . 3 |
14 | 13 | 3adant3 1013 | . 2 |
15 | 8, 12, 14 | 3eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 974 wceq 1349 wcel 2142 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12618 cgrp 12730 csg 12732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 df-sbg 12735 |
This theorem is referenced by: grpnpcan 12813 grppnpcan2 12815 |
Copyright terms: Public domain | W3C validator |