ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid Unicode version

Theorem grpressid 12936
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12532. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
grpressid  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )

Proof of Theorem grpressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3346 . . 3  |-  ( B  i^i  B )  =  B
2 eqidd 2178 . . . 4  |-  ( G  e.  Grp  ->  ( Gs  B )  =  ( Gs  B ) )
3 grpressid.b . . . . 5  |-  B  =  ( Base `  G
)
43a1i 9 . . . 4  |-  ( G  e.  Grp  ->  B  =  ( Base `  G
) )
5 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
6 basfn 12522 . . . . . 6  |-  Base  Fn  _V
7 elex 2750 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
8 funfvex 5534 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5318 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
113, 10eqeltrid 2264 . . . 4  |-  ( G  e.  Grp  ->  B  e.  _V )
122, 4, 5, 11ressbasd 12529 . . 3  |-  ( G  e.  Grp  ->  ( B  i^i  B )  =  ( Base `  ( Gs  B ) ) )
131, 12eqtr3id 2224 . 2  |-  ( G  e.  Grp  ->  B  =  ( Base `  ( Gs  B ) ) )
14 eqidd 2178 . . 3  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  G
) )
152, 14, 11, 7ressplusgd 12589 . 2  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  ( Gs  B ) ) )
16 eqid 2177 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
173, 16grpcl 12890 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
183, 16grpass 12891 . 2  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
19 eqid 2177 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
203, 19grpidcl 12909 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
213, 16, 19grplid 12911 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( 0g `  G ) ( +g  `  G ) x )  =  x )
22 eqid 2177 . . 3  |-  ( invg `  G )  =  ( invg `  G )
233, 22grpinvcl 12926 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
243, 16, 19, 22grplinv 12927 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 12904 1  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    i^i cin 3130    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   ↾s cress 12465   +g cplusg 12538   0gc0g 12710   Grpcgrp 12882   invgcminusg 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886
This theorem is referenced by:  subgid  13040  ringressid  13243
  Copyright terms: Public domain W3C validator