ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid Unicode version

Theorem grpressid 13263
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12774. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
grpressid  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )

Proof of Theorem grpressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3373 . . 3  |-  ( B  i^i  B )  =  B
2 eqidd 2197 . . . 4  |-  ( G  e.  Grp  ->  ( Gs  B )  =  ( Gs  B ) )
3 grpressid.b . . . . 5  |-  B  =  ( Base `  G
)
43a1i 9 . . . 4  |-  ( G  e.  Grp  ->  B  =  ( Base `  G
) )
5 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
6 basfn 12761 . . . . . 6  |-  Base  Fn  _V
7 elex 2774 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
8 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
113, 10eqeltrid 2283 . . . 4  |-  ( G  e.  Grp  ->  B  e.  _V )
122, 4, 5, 11ressbasd 12770 . . 3  |-  ( G  e.  Grp  ->  ( B  i^i  B )  =  ( Base `  ( Gs  B ) ) )
131, 12eqtr3id 2243 . 2  |-  ( G  e.  Grp  ->  B  =  ( Base `  ( Gs  B ) ) )
14 eqidd 2197 . . 3  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  G
) )
152, 14, 11, 7ressplusgd 12831 . 2  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  ( Gs  B ) ) )
16 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
173, 16grpcl 13210 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
183, 16grpass 13211 . 2  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
19 eqid 2196 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
203, 19grpidcl 13231 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
213, 16, 19grplid 13233 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( 0g `  G ) ( +g  `  G ) x )  =  x )
22 eqid 2196 . . 3  |-  ( invg `  G )  =  ( invg `  G )
233, 22grpinvcl 13250 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
243, 16, 19, 22grplinv 13252 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 13225 1  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   0gc0g 12958   Grpcgrp 13202   invgcminusg 13203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206
This theorem is referenced by:  subgid  13381  ablressid  13541  ringressid  13695
  Copyright terms: Public domain W3C validator