ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid Unicode version

Theorem grpressid 13335
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12845. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
grpressid  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )

Proof of Theorem grpressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3381 . . 3  |-  ( B  i^i  B )  =  B
2 eqidd 2205 . . . 4  |-  ( G  e.  Grp  ->  ( Gs  B )  =  ( Gs  B ) )
3 grpressid.b . . . . 5  |-  B  =  ( Base `  G
)
43a1i 9 . . . 4  |-  ( G  e.  Grp  ->  B  =  ( Base `  G
) )
5 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
6 basfn 12832 . . . . . 6  |-  Base  Fn  _V
7 elex 2782 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
8 funfvex 5592 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5375 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
113, 10eqeltrid 2291 . . . 4  |-  ( G  e.  Grp  ->  B  e.  _V )
122, 4, 5, 11ressbasd 12841 . . 3  |-  ( G  e.  Grp  ->  ( B  i^i  B )  =  ( Base `  ( Gs  B ) ) )
131, 12eqtr3id 2251 . 2  |-  ( G  e.  Grp  ->  B  =  ( Base `  ( Gs  B ) ) )
14 eqidd 2205 . . 3  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  G
) )
152, 14, 11, 7ressplusgd 12903 . 2  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  ( Gs  B ) ) )
16 eqid 2204 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
173, 16grpcl 13282 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
183, 16grpass 13283 . 2  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
19 eqid 2204 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
203, 19grpidcl 13303 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
213, 16, 19grplid 13305 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( 0g `  G ) ( +g  `  G ) x )  =  x )
22 eqid 2204 . . 3  |-  ( invg `  G )  =  ( invg `  G )
233, 22grpinvcl 13322 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
243, 16, 19, 22grplinv 13324 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 13297 1  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771    i^i cin 3164    Fn wfn 5265   ` cfv 5270  (class class class)co 5943   Basecbs 12774   ↾s cress 12775   +g cplusg 12851   0gc0g 13030   Grpcgrp 13274   invgcminusg 13275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278
This theorem is referenced by:  subgid  13453  ablressid  13613  ringressid  13767
  Copyright terms: Public domain W3C validator