ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid Unicode version

Theorem grpressid 13478
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12988. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
grpressid  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )

Proof of Theorem grpressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3386 . . 3  |-  ( B  i^i  B )  =  B
2 eqidd 2207 . . . 4  |-  ( G  e.  Grp  ->  ( Gs  B )  =  ( Gs  B ) )
3 grpressid.b . . . . 5  |-  B  =  ( Base `  G
)
43a1i 9 . . . 4  |-  ( G  e.  Grp  ->  B  =  ( Base `  G
) )
5 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
6 basfn 12975 . . . . . 6  |-  Base  Fn  _V
7 elex 2785 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
8 funfvex 5611 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5390 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
113, 10eqeltrid 2293 . . . 4  |-  ( G  e.  Grp  ->  B  e.  _V )
122, 4, 5, 11ressbasd 12984 . . 3  |-  ( G  e.  Grp  ->  ( B  i^i  B )  =  ( Base `  ( Gs  B ) ) )
131, 12eqtr3id 2253 . 2  |-  ( G  e.  Grp  ->  B  =  ( Base `  ( Gs  B ) ) )
14 eqidd 2207 . . 3  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  G
) )
152, 14, 11, 7ressplusgd 13046 . 2  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  ( Gs  B ) ) )
16 eqid 2206 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
173, 16grpcl 13425 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
183, 16grpass 13426 . 2  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
19 eqid 2206 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
203, 19grpidcl 13446 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
213, 16, 19grplid 13448 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( 0g `  G ) ( +g  `  G ) x )  =  x )
22 eqid 2206 . . 3  |-  ( invg `  G )  =  ( invg `  G )
233, 22grpinvcl 13465 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
243, 16, 19, 22grplinv 13467 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 13440 1  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    i^i cin 3169    Fn wfn 5280   ` cfv 5285  (class class class)co 5962   Basecbs 12917   ↾s cress 12918   +g cplusg 12994   0gc0g 13173   Grpcgrp 13417   invgcminusg 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421
This theorem is referenced by:  subgid  13596  ablressid  13756  ringressid  13910
  Copyright terms: Public domain W3C validator