ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid Unicode version

Theorem grpressid 13589
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 13099. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
grpressid  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )

Proof of Theorem grpressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3413 . . 3  |-  ( B  i^i  B )  =  B
2 eqidd 2230 . . . 4  |-  ( G  e.  Grp  ->  ( Gs  B )  =  ( Gs  B ) )
3 grpressid.b . . . . 5  |-  B  =  ( Base `  G
)
43a1i 9 . . . 4  |-  ( G  e.  Grp  ->  B  =  ( Base `  G
) )
5 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
6 basfn 13086 . . . . . 6  |-  Base  Fn  _V
7 elex 2811 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
8 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
113, 10eqeltrid 2316 . . . 4  |-  ( G  e.  Grp  ->  B  e.  _V )
122, 4, 5, 11ressbasd 13095 . . 3  |-  ( G  e.  Grp  ->  ( B  i^i  B )  =  ( Base `  ( Gs  B ) ) )
131, 12eqtr3id 2276 . 2  |-  ( G  e.  Grp  ->  B  =  ( Base `  ( Gs  B ) ) )
14 eqidd 2230 . . 3  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  G
) )
152, 14, 11, 7ressplusgd 13157 . 2  |-  ( G  e.  Grp  ->  ( +g  `  G )  =  ( +g  `  ( Gs  B ) ) )
16 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
173, 16grpcl 13536 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
183, 16grpass 13537 . 2  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
19 eqid 2229 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
203, 19grpidcl 13557 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
213, 16, 19grplid 13559 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( 0g `  G ) ( +g  `  G ) x )  =  x )
22 eqid 2229 . . 3  |-  ( invg `  G )  =  ( invg `  G )
233, 22grpinvcl 13576 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
243, 16, 19, 22grplinv 13578 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 13551 1  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   0gc0g 13284   Grpcgrp 13528   invgcminusg 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532
This theorem is referenced by:  subgid  13707  ablressid  13867  ringressid  14021
  Copyright terms: Public domain W3C validator