ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrpd GIF version

Theorem issgrpd 13162
Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
issgrpd.b (𝜑𝐵 = (Base‘𝐺))
issgrpd.p (𝜑+ = (+g𝐺))
issgrpd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
issgrpd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
issgrpd.v (𝜑𝐺𝑉)
Assertion
Ref Expression
issgrpd (𝜑𝐺 ∈ Smgrp)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem issgrpd
StepHypRef Expression
1 issgrpd.c . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
213expib 1208 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵))
3 issgrpd.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
43eleq2d 2274 . . . . . . 7 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
53eleq2d 2274 . . . . . . 7 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐺)))
64, 5anbi12d 473 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))))
7 issgrpd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
87oveqd 5951 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
98, 3eleq12d 2275 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺)))
102, 6, 93imtr3d 202 . . . . 5 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺)))
1110imp 124 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
12 df-3an 982 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵))
13 issgrpd.a . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1412, 13sylan2br 288 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1514ex 115 . . . . . . 7 (𝜑 → (((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
163eleq2d 2274 . . . . . . . 8 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝐺)))
176, 16anbi12d 473 . . . . . . 7 (𝜑 → (((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑧 ∈ (Base‘𝐺))))
18 eqidd 2205 . . . . . . . . 9 (𝜑𝑧 = 𝑧)
197, 8, 18oveq123d 5955 . . . . . . . 8 (𝜑 → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧))
20 eqidd 2205 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
217oveqd 5951 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑧) = (𝑦(+g𝐺)𝑧))
227, 20, 21oveq123d 5955 . . . . . . . 8 (𝜑 → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2319, 22eqeq12d 2219 . . . . . . 7 (𝜑 → (((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2415, 17, 233imtr3d 202 . . . . . 6 (𝜑 → (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2524impl 380 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2625ralrimiva 2578 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2711, 26jca 306 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2827ralrimivva 2587 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
29 issgrpd.v . . 3 (𝜑𝐺𝑉)
30 eqid 2204 . . . 4 (Base‘𝐺) = (Base‘𝐺)
31 eqid 2204 . . . 4 (+g𝐺) = (+g𝐺)
3230, 31issgrpv 13154 . . 3 (𝐺𝑉 → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
3329, 32syl 14 . 2 (𝜑 → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
3428, 33mpbird 167 1 (𝜑𝐺 ∈ Smgrp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wral 2483  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  Smgrpcsgrp 13151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-mgm 13106  df-sgrp 13152
This theorem is referenced by:  prdssgrpd  13165  isrngd  13633
  Copyright terms: Public domain W3C validator