ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrpd GIF version

Theorem issgrpd 12872
Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
issgrpd.b (𝜑𝐵 = (Base‘𝐺))
issgrpd.p (𝜑+ = (+g𝐺))
issgrpd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
issgrpd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
issgrpd.v (𝜑𝐺𝑉)
Assertion
Ref Expression
issgrpd (𝜑𝐺 ∈ Smgrp)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem issgrpd
StepHypRef Expression
1 issgrpd.c . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
213expib 1208 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵))
3 issgrpd.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
43eleq2d 2259 . . . . . . 7 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
53eleq2d 2259 . . . . . . 7 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐺)))
64, 5anbi12d 473 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))))
7 issgrpd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
87oveqd 5912 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
98, 3eleq12d 2260 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺)))
102, 6, 93imtr3d 202 . . . . 5 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺)))
1110imp 124 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
12 df-3an 982 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵))
13 issgrpd.a . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1412, 13sylan2br 288 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1514ex 115 . . . . . . 7 (𝜑 → (((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
163eleq2d 2259 . . . . . . . 8 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝐺)))
176, 16anbi12d 473 . . . . . . 7 (𝜑 → (((𝑥𝐵𝑦𝐵) ∧ 𝑧𝐵) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑧 ∈ (Base‘𝐺))))
18 eqidd 2190 . . . . . . . . 9 (𝜑𝑧 = 𝑧)
197, 8, 18oveq123d 5916 . . . . . . . 8 (𝜑 → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧))
20 eqidd 2190 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
217oveqd 5912 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑧) = (𝑦(+g𝐺)𝑧))
227, 20, 21oveq123d 5916 . . . . . . . 8 (𝜑 → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2319, 22eqeq12d 2204 . . . . . . 7 (𝜑 → (((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2415, 17, 233imtr3d 202 . . . . . 6 (𝜑 → (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2524impl 380 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2625ralrimiva 2563 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2711, 26jca 306 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2827ralrimivva 2572 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
29 issgrpd.v . . 3 (𝜑𝐺𝑉)
30 eqid 2189 . . . 4 (Base‘𝐺) = (Base‘𝐺)
31 eqid 2189 . . . 4 (+g𝐺) = (+g𝐺)
3230, 31issgrpv 12864 . . 3 (𝐺𝑉 → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
3329, 32syl 14 . 2 (𝜑 → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
3428, 33mpbird 167 1 (𝜑𝐺 ∈ Smgrp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wral 2468  cfv 5235  (class class class)co 5895  Basecbs 12511  +gcplusg 12586  Smgrpcsgrp 12861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-inn 8949  df-2 9007  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-mgm 12829  df-sgrp 12862
This theorem is referenced by:  isrngd  13304
  Copyright terms: Public domain W3C validator