| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgrppropd | Unicode version | ||
| Description: If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| sgrppropd.k |
|
| sgrppropd.l |
|
| sgrppropd.1 |
|
| sgrppropd.2 |
|
| sgrppropd.3 |
|
| Ref | Expression |
|---|---|
| sgrppropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . 6
| |
| 2 | simprl 529 |
. . . . . . 7
| |
| 3 | sgrppropd.1 |
. . . . . . . 8
| |
| 4 | 3 | ad2antrr 488 |
. . . . . . 7
|
| 5 | 2, 4 | eleqtrd 2285 |
. . . . . 6
|
| 6 | simprr 531 |
. . . . . . 7
| |
| 7 | 6, 4 | eleqtrd 2285 |
. . . . . 6
|
| 8 | eqid 2206 |
. . . . . . 7
| |
| 9 | eqid 2206 |
. . . . . . 7
| |
| 10 | 8, 9 | sgrpcl 13316 |
. . . . . 6
|
| 11 | 1, 5, 7, 10 | syl3anc 1250 |
. . . . 5
|
| 12 | 11, 4 | eleqtrrd 2286 |
. . . 4
|
| 13 | 12 | ralrimivva 2589 |
. . 3
|
| 14 | 13 | ex 115 |
. 2
|
| 15 | simplr 528 |
. . . . . 6
| |
| 16 | simprl 529 |
. . . . . . 7
| |
| 17 | sgrppropd.2 |
. . . . . . . 8
| |
| 18 | 17 | ad2antrr 488 |
. . . . . . 7
|
| 19 | 16, 18 | eleqtrd 2285 |
. . . . . 6
|
| 20 | simprr 531 |
. . . . . . 7
| |
| 21 | 20, 18 | eleqtrd 2285 |
. . . . . 6
|
| 22 | eqid 2206 |
. . . . . . 7
| |
| 23 | eqid 2206 |
. . . . . . 7
| |
| 24 | 22, 23 | sgrpcl 13316 |
. . . . . 6
|
| 25 | 15, 19, 21, 24 | syl3anc 1250 |
. . . . 5
|
| 26 | sgrppropd.3 |
. . . . . 6
| |
| 27 | 26 | adantlr 477 |
. . . . 5
|
| 28 | 25, 27, 18 | 3eltr4d 2290 |
. . . 4
|
| 29 | 28 | ralrimivva 2589 |
. . 3
|
| 30 | 29 | ex 115 |
. 2
|
| 31 | sgrppropd.k |
. . . . . 6
| |
| 32 | 8, 9 | issgrpv 13311 |
. . . . . 6
|
| 33 | 31, 32 | syl 14 |
. . . . 5
|
| 34 | 33 | adantr 276 |
. . . 4
|
| 35 | 26 | oveqrspc2v 5984 |
. . . . . . . . 9
|
| 36 | 35 | adantlr 477 |
. . . . . . . 8
|
| 37 | 36 | eleq1d 2275 |
. . . . . . 7
|
| 38 | simplll 533 |
. . . . . . . . . . 11
| |
| 39 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 40 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 41 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 42 | ovrspc2v 5983 |
. . . . . . . . . . . 12
| |
| 43 | 39, 40, 41, 42 | syl21anc 1249 |
. . . . . . . . . . 11
|
| 44 | simpr 110 |
. . . . . . . . . . 11
| |
| 45 | 26 | oveqrspc2v 5984 |
. . . . . . . . . . 11
|
| 46 | 38, 43, 44, 45 | syl12anc 1248 |
. . . . . . . . . 10
|
| 47 | 38, 39, 40, 35 | syl12anc 1248 |
. . . . . . . . . . 11
|
| 48 | 47 | oveq1d 5972 |
. . . . . . . . . 10
|
| 49 | 46, 48 | eqtrd 2239 |
. . . . . . . . 9
|
| 50 | ovrspc2v 5983 |
. . . . . . . . . . . 12
| |
| 51 | 40, 44, 41, 50 | syl21anc 1249 |
. . . . . . . . . . 11
|
| 52 | 26 | oveqrspc2v 5984 |
. . . . . . . . . . 11
|
| 53 | 38, 39, 51, 52 | syl12anc 1248 |
. . . . . . . . . 10
|
| 54 | 26 | oveqrspc2v 5984 |
. . . . . . . . . . . 12
|
| 55 | 38, 40, 44, 54 | syl12anc 1248 |
. . . . . . . . . . 11
|
| 56 | 55 | oveq2d 5973 |
. . . . . . . . . 10
|
| 57 | 53, 56 | eqtrd 2239 |
. . . . . . . . 9
|
| 58 | 49, 57 | eqeq12d 2221 |
. . . . . . . 8
|
| 59 | 58 | ralbidva 2503 |
. . . . . . 7
|
| 60 | 37, 59 | anbi12d 473 |
. . . . . 6
|
| 61 | 60 | 2ralbidva 2529 |
. . . . 5
|
| 62 | 3 | adantr 276 |
. . . . . 6
|
| 63 | 62 | eleq2d 2276 |
. . . . . . . 8
|
| 64 | 62 | raleqdv 2709 |
. . . . . . . 8
|
| 65 | 63, 64 | anbi12d 473 |
. . . . . . 7
|
| 66 | 62, 65 | raleqbidv 2719 |
. . . . . 6
|
| 67 | 62, 66 | raleqbidv 2719 |
. . . . 5
|
| 68 | 17 | adantr 276 |
. . . . . 6
|
| 69 | 68 | eleq2d 2276 |
. . . . . . . 8
|
| 70 | 68 | raleqdv 2709 |
. . . . . . . 8
|
| 71 | 69, 70 | anbi12d 473 |
. . . . . . 7
|
| 72 | 68, 71 | raleqbidv 2719 |
. . . . . 6
|
| 73 | 68, 72 | raleqbidv 2719 |
. . . . 5
|
| 74 | 61, 67, 73 | 3bitr3d 218 |
. . . 4
|
| 75 | sgrppropd.l |
. . . . . . 7
| |
| 76 | 22, 23 | issgrpv 13311 |
. . . . . . 7
|
| 77 | 75, 76 | syl 14 |
. . . . . 6
|
| 78 | 77 | bicomd 141 |
. . . . 5
|
| 79 | 78 | adantr 276 |
. . . 4
|
| 80 | 34, 74, 79 | 3bitrd 214 |
. . 3
|
| 81 | 80 | ex 115 |
. 2
|
| 82 | 14, 30, 81 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mgm 13263 df-sgrp 13309 |
| This theorem is referenced by: rngpropd 13792 |
| Copyright terms: Public domain | W3C validator |