| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxss1 | GIF version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixxssixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixxss1.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixxss1.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
| Ref | Expression |
|---|---|
| ixxss1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss1.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 2 | 1 | elixx3g 9976 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) ↔ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶))) |
| 3 | 2 | simplbi 274 | . . . . . 6 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 4 | 3 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 5 | 4 | simp3d 1013 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*) |
| 6 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵) | |
| 7 | 2 | simprbi 275 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
| 8 | 7 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
| 9 | 8 | simpld 112 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤) |
| 10 | simpll 527 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*) | |
| 11 | 4 | simp1d 1011 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*) |
| 12 | ixxss1.3 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) | |
| 13 | 10, 11, 5, 12 | syl3anc 1249 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
| 14 | 6, 9, 13 | mp2and 433 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤) |
| 15 | 8 | simprd 114 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑆𝐶) |
| 16 | 4 | simp2d 1012 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐶 ∈ ℝ*) |
| 17 | ixxssixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 18 | 17 | elixx1 9972 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 19 | 10, 16, 18 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 20 | 5, 14, 15, 19 | mpbir3and 1182 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
| 21 | 20 | ex 115 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝑤 ∈ (𝐵𝑃𝐶) → 𝑤 ∈ (𝐴𝑂𝐶))) |
| 22 | 21 | ssrdv 3189 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {crab 2479 ⊆ wss 3157 class class class wbr 4033 (class class class)co 5922 ∈ cmpo 5924 ℝ*cxr 8060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 |
| This theorem is referenced by: iooss1 9991 |
| Copyright terms: Public domain | W3C validator |