ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvs0 Unicode version

Theorem lmodvs0 14159
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvs0.f  |-  F  =  (Scalar `  W )
lmodvs0.s  |-  .x.  =  ( .s `  W )
lmodvs0.k  |-  K  =  ( Base `  F
)
lmodvs0.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
lmodvs0  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem lmodvs0
StepHypRef Expression
1 lmodvs0.f . . . . 5  |-  F  =  (Scalar `  W )
21lmodring 14132 . . . 4  |-  ( W  e.  LMod  ->  F  e. 
Ring )
3 lmodvs0.k . . . . 5  |-  K  =  ( Base `  F
)
4 eqid 2206 . . . . 5  |-  ( .r
`  F )  =  ( .r `  F
)
5 eqid 2206 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
63, 4, 5ringrz 13881 . . . 4  |-  ( ( F  e.  Ring  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
72, 6sylan 283 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
87oveq1d 5972 . 2  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( ( 0g
`  F )  .x.  .0.  ) )
9 simpl 109 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  W  e.  LMod )
10 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  X  e.  K )
112adantr 276 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  F  e.  Ring )
123, 5ring0cl 13858 . . . . 5  |-  ( F  e.  Ring  ->  ( 0g
`  F )  e.  K )
1311, 12syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( 0g `  F )  e.  K )
14 eqid 2206 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
15 lmodvs0.z . . . . . 6  |-  .0.  =  ( 0g `  W )
1614, 15lmod0vcl 14154 . . . . 5  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  W )
)
1716adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  .0.  e.  ( Base `  W
) )
18 lmodvs0.s . . . . 5  |-  .x.  =  ( .s `  W )
1914, 1, 18, 3, 4lmodvsass 14150 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  K  /\  ( 0g `  F )  e.  K  /\  .0.  e.  ( Base `  W
) ) )  -> 
( ( X ( .r `  F ) ( 0g `  F
) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
209, 10, 13, 17, 19syl13anc 1252 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
2114, 1, 18, 5, 15lmod0vs 14158 . . . . 5  |-  ( ( W  e.  LMod  /\  .0.  e.  ( Base `  W
) )  ->  (
( 0g `  F
)  .x.  .0.  )  =  .0.  )
2217, 21syldan 282 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( 0g `  F
)  .x.  .0.  )  =  .0.  )
2322oveq2d 5973 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  ( ( 0g
`  F )  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2420, 23eqtrd 2239 . 2  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  .0.  ) )
258, 24, 223eqtr3d 2247 1  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   ` cfv 5280  (class class class)co 5957   Basecbs 12907   .rcmulr 12985  Scalarcsca 12987   .scvsca 12988   0gc0g 13163   Ringcrg 13833   LModclmod 14124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-mgp 13758  df-ring 13835  df-lmod 14126
This theorem is referenced by:  lmodfopne  14163  lsssn0  14207
  Copyright terms: Public domain W3C validator