ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvs0 Unicode version

Theorem lmodvs0 13417
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvs0.f  |-  F  =  (Scalar `  W )
lmodvs0.s  |-  .x.  =  ( .s `  W )
lmodvs0.k  |-  K  =  ( Base `  F
)
lmodvs0.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
lmodvs0  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem lmodvs0
StepHypRef Expression
1 lmodvs0.f . . . . 5  |-  F  =  (Scalar `  W )
21lmodring 13390 . . . 4  |-  ( W  e.  LMod  ->  F  e. 
Ring )
3 lmodvs0.k . . . . 5  |-  K  =  ( Base `  F
)
4 eqid 2177 . . . . 5  |-  ( .r
`  F )  =  ( .r `  F
)
5 eqid 2177 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
63, 4, 5ringrz 13228 . . . 4  |-  ( ( F  e.  Ring  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
72, 6sylan 283 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
87oveq1d 5892 . 2  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( ( 0g
`  F )  .x.  .0.  ) )
9 simpl 109 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  W  e.  LMod )
10 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  X  e.  K )
112adantr 276 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  F  e.  Ring )
123, 5ring0cl 13209 . . . . 5  |-  ( F  e.  Ring  ->  ( 0g
`  F )  e.  K )
1311, 12syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( 0g `  F )  e.  K )
14 eqid 2177 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
15 lmodvs0.z . . . . . 6  |-  .0.  =  ( 0g `  W )
1614, 15lmod0vcl 13412 . . . . 5  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  W )
)
1716adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  .0.  e.  ( Base `  W
) )
18 lmodvs0.s . . . . 5  |-  .x.  =  ( .s `  W )
1914, 1, 18, 3, 4lmodvsass 13408 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  K  /\  ( 0g `  F )  e.  K  /\  .0.  e.  ( Base `  W
) ) )  -> 
( ( X ( .r `  F ) ( 0g `  F
) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
209, 10, 13, 17, 19syl13anc 1240 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
2114, 1, 18, 5, 15lmod0vs 13416 . . . . 5  |-  ( ( W  e.  LMod  /\  .0.  e.  ( Base `  W
) )  ->  (
( 0g `  F
)  .x.  .0.  )  =  .0.  )
2217, 21syldan 282 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( 0g `  F
)  .x.  .0.  )  =  .0.  )
2322oveq2d 5893 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  ( ( 0g
`  F )  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2420, 23eqtrd 2210 . 2  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  .0.  ) )
258, 24, 223eqtr3d 2218 1  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   Basecbs 12464   .rcmulr 12539  Scalarcsca 12541   .scvsca 12542   0gc0g 12710   Ringcrg 13184   LModclmod 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-mgp 13136  df-ring 13186  df-lmod 13384
This theorem is referenced by:  lmodfopne  13421  lsssn0  13461
  Copyright terms: Public domain W3C validator