| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvs0 | Unicode version | ||
| Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvs0.f |
|
| lmodvs0.s |
|
| lmodvs0.k |
|
| lmodvs0.z |
|
| Ref | Expression |
|---|---|
| lmodvs0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvs0.f |
. . . . 5
| |
| 2 | 1 | lmodring 13975 |
. . . 4
|
| 3 | lmodvs0.k |
. . . . 5
| |
| 4 | eqid 2204 |
. . . . 5
| |
| 5 | eqid 2204 |
. . . . 5
| |
| 6 | 3, 4, 5 | ringrz 13724 |
. . . 4
|
| 7 | 2, 6 | sylan 283 |
. . 3
|
| 8 | 7 | oveq1d 5949 |
. 2
|
| 9 | simpl 109 |
. . . 4
| |
| 10 | simpr 110 |
. . . 4
| |
| 11 | 2 | adantr 276 |
. . . . 5
|
| 12 | 3, 5 | ring0cl 13701 |
. . . . 5
|
| 13 | 11, 12 | syl 14 |
. . . 4
|
| 14 | eqid 2204 |
. . . . . 6
| |
| 15 | lmodvs0.z |
. . . . . 6
| |
| 16 | 14, 15 | lmod0vcl 13997 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | lmodvs0.s |
. . . . 5
| |
| 19 | 14, 1, 18, 3, 4 | lmodvsass 13993 |
. . . 4
|
| 20 | 9, 10, 13, 17, 19 | syl13anc 1251 |
. . 3
|
| 21 | 14, 1, 18, 5, 15 | lmod0vs 14001 |
. . . . 5
|
| 22 | 17, 21 | syldan 282 |
. . . 4
|
| 23 | 22 | oveq2d 5950 |
. . 3
|
| 24 | 20, 23 | eqtrd 2237 |
. 2
|
| 25 | 8, 24, 22 | 3eqtr3d 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-plusg 12841 df-mulr 12842 df-sca 12844 df-vsca 12845 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-mgp 13601 df-ring 13678 df-lmod 13969 |
| This theorem is referenced by: lmodfopne 14006 lsssn0 14050 |
| Copyright terms: Public domain | W3C validator |