Step | Hyp | Ref
| Expression |
1 | | simpl 109 |
. . . . 5
β’ ((π β LMod β§ π β π) β π β LMod) |
2 | | lmod0vs.f |
. . . . . . . 8
β’ πΉ = (Scalarβπ) |
3 | 2 | lmodring 13385 |
. . . . . . 7
β’ (π β LMod β πΉ β Ring) |
4 | 3 | adantr 276 |
. . . . . 6
β’ ((π β LMod β§ π β π) β πΉ β Ring) |
5 | | eqid 2177 |
. . . . . . 7
β’
(BaseβπΉ) =
(BaseβπΉ) |
6 | | lmod0vs.o |
. . . . . . 7
β’ π = (0gβπΉ) |
7 | 5, 6 | ring0cl 13204 |
. . . . . 6
β’ (πΉ β Ring β π β (BaseβπΉ)) |
8 | 4, 7 | syl 14 |
. . . . 5
β’ ((π β LMod β§ π β π) β π β (BaseβπΉ)) |
9 | | simpr 110 |
. . . . 5
β’ ((π β LMod β§ π β π) β π β π) |
10 | | lmod0vs.v |
. . . . . 6
β’ π = (Baseβπ) |
11 | | eqid 2177 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
12 | | lmod0vs.s |
. . . . . 6
β’ Β· = (
Β·π βπ) |
13 | | eqid 2177 |
. . . . . 6
β’
(+gβπΉ) = (+gβπΉ) |
14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 13402 |
. . . . 5
β’ ((π β LMod β§ (π β (BaseβπΉ) β§ π β (BaseβπΉ) β§ π β π)) β ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) |
15 | 1, 8, 8, 9, 14 | syl13anc 1240 |
. . . 4
β’ ((π β LMod β§ π β π) β ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) |
16 | | ringgrp 13184 |
. . . . . . 7
β’ (πΉ β Ring β πΉ β Grp) |
17 | 4, 16 | syl 14 |
. . . . . 6
β’ ((π β LMod β§ π β π) β πΉ β Grp) |
18 | 5, 13, 6 | grplid 12906 |
. . . . . 6
β’ ((πΉ β Grp β§ π β (BaseβπΉ)) β (π(+gβπΉ)π) = π) |
19 | 17, 8, 18 | syl2anc 411 |
. . . . 5
β’ ((π β LMod β§ π β π) β (π(+gβπΉ)π) = π) |
20 | 19 | oveq1d 5890 |
. . . 4
β’ ((π β LMod β§ π β π) β ((π(+gβπΉ)π) Β· π) = (π Β· π)) |
21 | 15, 20 | eqtr3d 2212 |
. . 3
β’ ((π β LMod β§ π β π) β ((π Β· π)(+gβπ)(π Β· π)) = (π Β· π)) |
22 | 10, 2, 12, 5 | lmodvscl 13395 |
. . . . 5
β’ ((π β LMod β§ π β (BaseβπΉ) β§ π β π) β (π Β· π) β π) |
23 | 1, 8, 9, 22 | syl3anc 1238 |
. . . 4
β’ ((π β LMod β§ π β π) β (π Β· π) β π) |
24 | | lmod0vs.z |
. . . . 5
β’ 0 =
(0gβπ) |
25 | 10, 11, 24 | lmod0vid 13410 |
. . . 4
β’ ((π β LMod β§ (π Β· π) β π) β (((π Β· π)(+gβπ)(π Β· π)) = (π Β· π) β 0 = (π Β· π))) |
26 | 23, 25 | syldan 282 |
. . 3
β’ ((π β LMod β§ π β π) β (((π Β· π)(+gβπ)(π Β· π)) = (π Β· π) β 0 = (π Β· π))) |
27 | 21, 26 | mpbid 147 |
. 2
β’ ((π β LMod β§ π β π) β 0 = (π Β· π)) |
28 | 27 | eqcomd 2183 |
1
β’ ((π β LMod β§ π β π) β (π Β· π) = 0 ) |