| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmod0vs | GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmod0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmod0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
| lmod0vs.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmod0vs | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lmod0vs.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 14244 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Ring) |
| 5 | eqid 2229 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | lmod0vs.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐹) | |
| 7 | 5, 6 | ring0cl 13970 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹)) |
| 8 | 4, 7 | syl 14 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
| 9 | simpr 110 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 10 | lmod0vs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | lmod0vs.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 14261 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 15 | 1, 8, 8, 9, 14 | syl13anc 1273 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 16 | ringgrp 13950 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 17 | 4, 16 | syl 14 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Grp) |
| 18 | 5, 13, 6 | grplid 13550 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 19 | 17, 8, 18 | syl2anc 411 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 20 | 19 | oveq1d 6009 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋)) |
| 21 | 15, 20 | eqtr3d 2264 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋)) |
| 22 | 10, 2, 12, 5 | lmodvscl 14254 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 23 | 1, 8, 9, 22 | syl3anc 1271 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 24 | lmod0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 25 | 10, 11, 24 | lmod0vid 14269 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 26 | 23, 25 | syldan 282 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 27 | 21, 26 | mpbid 147 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 0 = (𝑂 · 𝑋)) |
| 28 | 27 | eqcomd 2235 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 Scalarcsca 13099 ·𝑠 cvsca 13100 0gc0g 13275 Grpcgrp 13519 Ringcrg 13945 LModclmod 14236 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-ov 5997 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-ring 13947 df-lmod 14238 |
| This theorem is referenced by: lmodvs0 14271 lmodvsmmulgdi 14272 lmodvneg1 14279 |
| Copyright terms: Public domain | W3C validator |